Skip to main content

Aspects of Quantum Theory

  • Chapter
  • First Online:
  • 426 Accesses

Abstract

The basic formalism of quantum theory is reviewed and put into my setting. In particular, spin and angular momentum are considered, and also e-variables like position and momentum. For the spin/angular momentum case, the correspondence between question-and-answer pairs and unit Hilbert space vectors is proved directly. A link to statistical inference is found by proving a focused version of the likelihood principle. From this and from an assumption of rationality the Born rule is proved. A macroscopic example is proposed. Measurements and quantum statistical inference are briefly discussed. Bell’s inequality issues are considered from an epistemic point of view. The free will theorem is mentioned, and the Schrödinger equation is derived in the one-dimensional case. Several so-called paradoxes are explained from an epistemic setting. Quantum measurements when the density matrix is completely unknown are discussed from a statistical point of view. A discussion of the book so far concludes the chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aerts, D., & Gabora, L. (2005a). A theory of concepts and their properties I. The structure of sets of contexts and properties. Kybernetes, 34, 167–191.

    Article  Google Scholar 

  • Aerts, D., & Gabora, L. (2005b). A theory of concepts and their properties II. A Hilbert space representation. Kybernetes, 34, 192–221.

    Article  Google Scholar 

  • Aerts, D., de Blanchi, M. S., & Sozzi, S. (2016). The extended Bloch representation of entanglement and measurement in quantum mechanics. International Journal of Theoretical Physics. https://doi.org/10.1007/s10773-016-3257-7.

  • Ballentine, L. E. (1998). Quantum mechanics: A modern development. Singapore: World Scientific.

    Book  Google Scholar 

  • Bargmann, V. (1964). Note on Wigner’s Theorem on symmetry operations. Journal of Mathematical Physics, 5, 862–868.

    Article  MathSciNet  Google Scholar 

  • Barndorff-Nielsen, O. E., Gill, R. D., & Jupp, P. E. (2003). On quantum statistical inference. Journal of the Royal Statistical Society B, 65, 775–816.

    Article  MathSciNet  Google Scholar 

  • Barut, A. S., & Raczka, R. (1985). Theory of group representation and applications. Warsaw: Polish Scientific Publishers.

    MATH  Google Scholar 

  • Bing-Ren, L. (1992). Introduction to operator algebras. Singapore: World Scientific.

    Book  Google Scholar 

  • Bohr, N. (1935a). Quantum mechanics and physical reality. Nature, 136, 65.

    Article  Google Scholar 

  • Bohr, N. (1935b). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 48, 696–702.

    Article  Google Scholar 

  • Breiman, L. (2001). Statistical modeling: The two cultures. Statistical Science, 16, 199–231.

    Article  MathSciNet  Google Scholar 

  • Briggs, G. A. D., Butterfield, J. N., & Zeilinger, A. (2013). The Oxford Questions on the foundation of quantum physics. Proceedings of the Royal Society A, 469, 20130299.

    Article  Google Scholar 

  • Brown, L. M. (Ed.) (2005). Feynman’s thesis: A new approach to quantum theory. New Jersey: World Scientific.

    MATH  Google Scholar 

  • Busch, P. (2003). Quantum states and generalized observables: A simple proof of Gleason’s Theorem. Physical Review Letters, 91(12), 120403.

    Article  MathSciNet  Google Scholar 

  • Busch, P., Lahti, P. J., & Mittelstaedt, P. (1991). The quantum theory of measurement. Berlin: Springer.

    Book  Google Scholar 

  • Busch, P., Lahti, P., Pellonpää, J.-P., & Ylinen, K. (2016). Quantum measurement. Berlin: Springer.

    Book  Google Scholar 

  • Caves, C. M., Fuchs, C. A., & Schack, R. (2002). Quantum probabilities as Bayesian probabilities. Physical Review, A65, 022305.

    Article  MathSciNet  Google Scholar 

  • Colbeck, R., & Renner, R. (2013). A short note on the concept of free choice. arXiv: 1302.4446 [quant-ph].

    Google Scholar 

  • Conway, J., & Kochen, S. (2006). The free will theorem. Foundations of Physics, 36, 1441–1473.

    Article  MathSciNet  Google Scholar 

  • Conway, J., & Kochen, S. (2008). The strong free will theorem. arXiv: 0807.3286 [quant-ph].

    Google Scholar 

  • Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47, 777–780.

    Article  Google Scholar 

  • Everett, H. III (1973). The theory of the universal wave function. In N. Graham, B. DeWitt (Eds.), The many worlds interpretation of quantum mechanics. Princeton: Princeton University Press.

    Google Scholar 

  • Feynman, R. P. (1985). QED: The strange theory of light and matter. Princeton: Princeton University Press.

    Google Scholar 

  • Frieden, B. R. (1998). Physics from fisher information: A unification. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Frieden, B. R. (2004). Science from fisher information: A unification. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Fuchs, C. A. (2010). QBism, the Perimeter of Quantum Bayesianism. arXiv: 1003.5209v1 [quant-ph].

    Google Scholar 

  • Fuchs, C. A., Mermin, N. D., & Schack, R. (2013). An introduction to QBism with an application to the locality of quantum mechanics. arXiv: 1311.5253v1 [quant-ph].

    Google Scholar 

  • Gill, R., Guta, M., & Nussbaum, M. (2014). New horizons in statistical decision theory. Mathematisches Forschungsinstitut Oberwolfach. Report No. 41.

    Google Scholar 

  • Giulini, D. (2009). Superselection rules. arXiv: 0710.1516v2 [quant-ph].

    Google Scholar 

  • Griffiths, R. B. (2014). The consistent history approach to quantum mechanics. In E. N. Zalta (Ed.), Stanford encyclopedia of philosophy. Stanford: Metaphysics Research Lab, Stanford University.

    Google Scholar 

  • Griffiths, R. B. (2017a). What quantum measurements measure. Physical Review A, 96, 032110.

    Article  MathSciNet  Google Scholar 

  • Griffiths, R. B. (2017b). Quantum information: What is it all about? Entropy, 19, 645.

    Google Scholar 

  • Hammond, P. J. (2011). Laboratory games and quantum behavior. The normal form with a separable state space. Working paper. Dept. of Economics, University of Warwick.

    Google Scholar 

  • Hardy, L., & Spekkens R. (2010). Why physics needs quantum foundations. arXiv: 1003.5008 [quant-ph].

    Google Scholar 

  • Hayashi, E. (Ed.) (2005). Asymptotic theory of quantum statistical inference. Selected papers. Singapore: World Scientific.

    MATH  Google Scholar 

  • Helland, I. S. (2004). Statistical inference under symmetry. International Statistical Review, 72, 409–422.

    Article  Google Scholar 

  • Helland, I. S. (2006). Extended statistical modeling under symmetry; the link toward quantum mechanics. Annals of Statistics, 34, 42–77.

    Article  MathSciNet  Google Scholar 

  • Helland, I. S. (2008). Quantum mechanics from focusing and symmetry. Foundations of Physics, 38, 818–842.

    Article  MathSciNet  Google Scholar 

  • Helland, I. S. (2010). Steps towards a unified basis for scientific models and methods. Singapore: World Scientific.

    MATH  Google Scholar 

  • Helstrom, C. W. (1976). Quantum detection and estimation theory. New York: Academic Press.

    MATH  Google Scholar 

  • Holevo, A. S. (1982). Probabilistic and statistical aspects of quantum theory. Amsterdam: North-Holland.

    MATH  Google Scholar 

  • Holevo, A. S. (2001). Statistical structure of quantum theory. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Jaeger, G. (2018). Developments in quantum probability and the Copenhagen approach. Entropy, 20, 420–438.

    Article  Google Scholar 

  • Khrennikov, A. (2016b). After Bell. arXiv: 1603.086774 [quant-ph].

    Google Scholar 

  • Klebaner, F. C. (1998). Introduction to stochastic calculus with applications. London: Imperial College Press.

    Book  Google Scholar 

  • Kochen, S., & Specker, E. P. (1967). The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics, 17, 59–87.

    MathSciNet  MATH  Google Scholar 

  • Lehmann, E. L., & Casella, G. (1998). Theory of point estimation. New York: Springer.

    MATH  Google Scholar 

  • Ma, Z.-Q. (2007). Group theory for physicists. New Jersey: World Scientific.

    Book  Google Scholar 

  • Martens, H., & Næs, T. (1989). Multivariate calibration. Hoboken, NJ: Wiley.

    MATH  Google Scholar 

  • Mermin, N. D. (1985). Is the moon there when nobody looks? Physics Today, 38, 38–47.

    Article  Google Scholar 

  • Messiah, A. (1969). Quantum mechanics (Vol. II). Amsterdam: North-Holland.

    MATH  Google Scholar 

  • Murphy, G. J. (1990). C*-algebras and operator theory. Boston: Academic Press.

    MATH  Google Scholar 

  • Nelson, E. (1967). Dynamical theories of Brownian motion. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Norsen, T., & Nelson, S. (2013). Yet another snapshot of fundamental attitudes toward quantum mechanic. arXiv:1306.4646v2 [quant-ph].

    Google Scholar 

  • Penrose, R. (2016). Fashion, faith, and fantasy in the new physics of the universe. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Peres, A. (1993). Quantum theory: Concepts and methods. Dordrecht: Kluwer.

    MATH  Google Scholar 

  • Pothos, E. M., & Busemeyer, J. R. (2013). Can quantum probability provide a new direction for cognitive modeling? With discussion. Behavioral and Brain Sciences, 36, 255–327.

    Article  Google Scholar 

  • Schlosshauer, M. (2007). Decoherence and the quantum-to-classical transition. New York: Springer.

    Google Scholar 

  • Schlosshauer, M., Kofler, J., & Zeilinger, A. (2013). A snapshot of fundamental attitudes toward quantum mechanics. Studies in History and Philosophy of Modern Physics, 44, 222–238..

    Article  Google Scholar 

  • Tversky, A., & Kahneman, D. (1983). Extensional versus intuitive reasoning: The cojunction fallacy in probability judgements. Psychological Review, 90, 293–315.

    Article  Google Scholar 

  • Vedral, V. (2011). Living in a quantum world. Scientific American, 304(6), June 2011, 20–25.

    Google Scholar 

  • Venema, Y. (2001). Temporal logic. In L. Goble (Ed.), The Blackwell guide to philosophical logic. Hoboken, NJ: Blackwell.

    Google Scholar 

  • von Baeyer, H. C. (2013). Quantum weirdness? It’s all in your mind. Scientific American, 308(6), June 2013, 38–43.

    Google Scholar 

  • von Neumann, J. (1927). Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1927, 245–272.

    MATH  Google Scholar 

  • Wigner, E. (1939). On unitary representations of the inhomogeneous Lorentz group. Annals of Mathematics, 40, 149–204.

    Article  MathSciNet  Google Scholar 

  • Wigner, E. P. (1959). Group theory and its application to the quantum mechanics of atomic spectra. New York: Academic Press.

    MATH  Google Scholar 

  • Wootters, W. K. (2004). Quantum measurements and finite geometry. arXiv:quant-ph/0406032v3.

    Google Scholar 

  • Xie, M., & Singh, K. (2013). Confidence distributions, the frequentist distribution estimator of a parameter - a review. Including discussion. International Statistical Review, 81, 1–77.

    Article  Google Scholar 

  • Yukalov, V. I., & Sornette, D. (2010). Mathematical structure of quantum decision theory. Advances in Complex Systems, 13, 659–698.

    Article  MathSciNet  Google Scholar 

  • Yukalov, V. I., & Sornette, D. (2014). How brains make decisions. Springer Proceedings in Physics, 150, 37–53.

    Google Scholar 

  • Yukalov, V. I., Yukalova, E. P., & Sornette, D. (2017). Information processing by networks of quantum decision makers. arXiv: 1712.05734 [physics.soc-ph].

    Google Scholar 

  • Zeilinger, A. (2010). Dance of the Photons: From Einstein to quantum teleportation. New York: Farrar, Straus and Giroux.

    Google Scholar 

  • Östborn, P. (2016). A strict epistemic approach to physics. arXiv:1601.00680v2 [quant-ph].

    Google Scholar 

  • Östborn, P. (2017). Quantum mechanics from an epistemic state space. arXiv:1703.08543 [quant-ph].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Helland, I.S. (2018). Aspects of Quantum Theory. In: Epistemic Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-95068-6_5

Download citation

Publish with us

Policies and ethics