Skip to main content

The Epistemic View Upon Science

  • Chapter
  • First Online:
Epistemic Processes
  • 426 Accesses

Abstract

This chapter gives the background for the book. Its relation to other views on the foundation of quantum theory are clarified and discussed. The fundamental notion of an e-variable (epistemic conceptual variable) is explained, it is discussed and is related to the statistical parameter-concept. A quantum state is in some generality linked to a question-and-answer pair, and an experiment connected to such a question-and-answer pair is described for the case of a spin 1/2 particle. The two basic postulates of quantum theory are stated and discussed. The importance of inaccessible conceptual variables is stressed, and this is related to Bohr complementarity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts, D., Sozzo, S., & Tapia, J. (2014). Identifying quantum structures in the Ellsberg paradox. International Journal of Theoretical Physics, 53, 3666–3682.

    Article  MathSciNet  Google Scholar 

  • Ashtiani, M. B., & Azgomi, M. A. (2015). A survey of quantum-like approaches to decision making and cognition. Mathematical Social Sciences, 75, 49–80.

    Article  MathSciNet  Google Scholar 

  • Bagarello, F. (2013). Quantum dynamics for classical systems. Hobroken, NJ: Wiley.

    MATH  Google Scholar 

  • Ballentine, L. E. (1998). Quantum mechanics. A modern development. Singapore: World Scientific.

    Book  Google Scholar 

  • Bell, J. S. (1975). The theory of local beables. Reprinted in Bell (1987).

    Google Scholar 

  • Bell, J. S. (1987). Speakable and unspeakable in quantum mechanics. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Brody, T. (1993). In L. de la Pera & P. Hodgson. The philosophy behind physics. Berlin: Springer.

    Google Scholar 

  • Busemeyer, J. R., & Bruza, P. (2012). Quantum models of cognition and decision. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Cabello, A. (2015). Interpretations of quantum theory: A map of madness. arXiv: 1509.0471v1 [quant-ph].

    Google Scholar 

  • Charrakh, O. (2017). On the reality of the wavefunction. arXiv: 1706.01819 [physics.hist-ph].

    Google Scholar 

  • Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47, 777–780.

    Article  Google Scholar 

  • Eichberger, J., & Pirner, H. J. (2017). Decision theory with a Hilbert space as a probability space. arXiv: 1707.07556 [quant-ph].

    Google Scholar 

  • Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London. Series A, 222, 309–368. Reprinted in: Fisher R. A. Contribution to Mathematical Statistics. Wiley, New York (1950)

    Google Scholar 

  • Fuchs, C. A. (2010). QBism, the Perimeter of Quantum Bayesianism. arXiv: 1003.5209v1 [quant-ph].

    Google Scholar 

  • Fuchs, C. A. (2016). On participatory realism. arXiv: 1601.04360v2 [quant-ph].

    Google Scholar 

  • Fuchs, C. A., Mermin, N. D., & Schack, R. (2013). An introduction to QBism with an application to the locality of quantum mechanics. arXiv: 1311.5253v1 [quant-ph].

    Google Scholar 

  • Fuchs, C. A., & Peres, A. (2000). Quantum theory needs no interpretation. Physics Today, S-0031-9228-0003-230-0; Discussion Physics Today, S-0031-9228-0009-220-6.

    Google Scholar 

  • Fuchs, C. A., & Schack, R. (2011). A quantum-Bayesian route to quantum-state space. Foundations of Physics, 41, 345–356.

    Article  MathSciNet  Google Scholar 

  • Haven, E., & Khrennikov, A. (2013). Quantum social science. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Haven, E., & Khennikov, A. (2016). Quantum probability and mathematical modelling of decision making. Philosophical Transactions of the Royal Society A, 374, 20150105.

    Article  MathSciNet  Google Scholar 

  • Helland, I. S. (2006). Extended statistical modeling under symmetry; the link toward quantum mechanics. Annals of Statistics, 34, 42–77.

    Article  MathSciNet  Google Scholar 

  • Helland, I. S. (2008). Quantum mechanics from focusing and symmetry. Foundations of Physics, 38, 818–842.

    Article  MathSciNet  Google Scholar 

  • Helland, I. S. (2010). Steps towards a unified basis for scientific models and methods. Singapore: World Scientific.

    MATH  Google Scholar 

  • Khrennikov, A. (2010). Ubiquitous quantum structure. Berlin: Springer.

    Book  Google Scholar 

  • Khrennikov, A. (2014). Beyond quantum. Danvers, MA: Pan Stanford Publishing.

    Book  Google Scholar 

  • Khrennikov, A. (2016). Quantum Bayesianism as a basis of general theory of decision making. Philosophical Transactions of the Royal Society A, 374, 20150245.

    Article  MathSciNet  Google Scholar 

  • Knorr Cetina, K. (1999). Epistemic cultures. How the sciences make knowledge. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Leifer, M. S. (2014). Is the quantum state real? An extended review of ψ-ontology theorems. arXiv:1409.1570v2 [quant-ph].

    Google Scholar 

  • Mermin, N. D. (2014). Why QBism is not the Copenhagen interpretation and what John Bell might have thought of it. arXiv.1409.2454 [quant-ph].

    Google Scholar 

  • Norsen, T., & Nelson, S. (2013). Yet another snapshot of fundamental attitudes toward quantum mechanic. arXiv:1306.4646v2 [quant-ph].

    Google Scholar 

  • Pearl, J. (2009). Causality. Models, reasoning and inference (2nd ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Pothos, E. M., & Busemeyer, J. R. (2013). Can quantum probability provide a new direction for cognitive modeling? With discussion. Behavioral and Brain Sciences, 36, 255–327.

    Article  Google Scholar 

  • Pusey, M. F., Barrett, J., & Rudolph, T. (2012). On the reality of quantum states. Nature Physics, 8, 475–478.

    Article  Google Scholar 

  • Rovelli, C. (2016). An argument against a realistic interpretation of the wave function. Foundations of Physics, 46, 1229–1237.

    Article  MathSciNet  Google Scholar 

  • Schlosshauer, M., Koer, J., & Zeilinger, A. (2013). A snapshot of fundamental attitudes toward quantum mechanics. Studies in History and Philosophy of Modern Physics, 44, 222–238.

    Article  Google Scholar 

  • Schweder, T., & Hjort, N. L. (2016). Confidence, likelihood, probability. Statistical inference with confidence distributions. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Smilga, W. (2017). Towards a constructive foundation of quantum mechanics. Foundations of Physics, 47, 149–159.

    Article  MathSciNet  Google Scholar 

  • Smolin, L. (2011). A real ensemble interpretation of quantum mechanics. aXiv. 1104.2822 [quant-ph].

    Google Scholar 

  • Sornette, D. (2014). Physics and financial economics (1776-2014): puzzles, Ising and agent-based models. Reports on Progress in Physics, 77, 062001.

    Article  MathSciNet  Google Scholar 

  • Spekkens, R. W. (2007). In defense of the epistemic view of quantum states: A toy theory. Physical Review A, 75, 032110.

    Article  Google Scholar 

  • Spekkens R. W. (2014). Quasi-quantization: Classical statistical theories with an epistemic restriction. arXiv.1409.304 [quant-ph].

    Google Scholar 

  • Tammaro E. (2014). Why current interpretations of quantum mechanics are deficient. arXiv1408.2083v2 [quant-ph].

    Google Scholar 

  • Timpson, C. G. (2008). Quantum Bayesianism: A study. Studies in History an Philosophy of Modern Physics, 39, 579–609.

    Article  MathSciNet  Google Scholar 

  • von Baeyer, H. C. (2013). Quantum weirdness? It’s all in your mind. Scientific American, 308(6), 38–43.

    Article  Google Scholar 

  • von Baeyer, H. C. (2016). QBism: The future of quantum physics. Harvard: Harvard University Press.

    Book  Google Scholar 

  • von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik. Berlin: Springer.

    MATH  Google Scholar 

  • Wootters, W. K. (1980). The Acquisition of Information from Quantum Measurements. PhD Thesis. Center for Theoretical Physics. The University of Texas at Austin.

    Google Scholar 

  • Yukalov V. I., & Sornette, D. (2008). Quantum decision theory as a quantum theory of measurement. Physics Letters A, 372, 6867–6871.

    Article  MathSciNet  Google Scholar 

  • Yukalov, V. I., & Sornette, D. (2009). Processing information in quantum decision theory. Entropy, 11, 1073–1120.

    Article  MathSciNet  Google Scholar 

  • Yukalov, V. I., & Sornette, D. (2010). Mathematical structure of quantum decision theory. Advances in Complex Systems, 13, 659–698.

    Article  MathSciNet  Google Scholar 

  • Yukalov, V. I., & Sornette, D. (2011). Decision theory with prospect interference and entanglement. Theory and Decision, 70, 383–328.

    Article  MathSciNet  Google Scholar 

  • Yukalov, V. I., & Sornette, D. (2014). How brains make decisions. Springer Proceedings in Physics, 150, 37–53.

    Google Scholar 

  • Zeilinger, A. (1999). A foundational principle for quantum mechanics. Foundations of Physics, 29, 631–643.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Helland, I.S. (2018). The Epistemic View Upon Science. In: Epistemic Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-95068-6_1

Download citation

Publish with us

Policies and ethics