Skip to main content

Thermodynamic Consideration of Copper Matte Smelting Conditions with Respect to Minor Element Removal and Slag Valorization Options

  • Conference paper
  • First Online:
Extraction 2018

Abstract

Valorization of slag from metallurgical industrial processes becomes ever more important as this may help optimizing and reducing the use of natural resources such as rock and sand. In view of this objective, metallurgical processes have to be analyzed in order to modify the slag composition so that it will meet the expected requirements of potential users of these resources. This paper gives the results of a thermodynamic analysis of the flash smelting process to understand the impact of operational parameters on slag chemistry and elemental partitioning in the process. It is shown that an increase of the matte grade and temperature leads to higher deportment of Pb, Zn and As to the slag. With increasing matte grade the volatilization of these elements decreases. Furthermore, the results indicate an increasing solubility of Cu and S in slag at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagamori M, Mackey PJ (1978) Thermodynamics of copper matte converting: part II. Metall Trans B 9:567–579

    Article  Google Scholar 

  2. Chaubal PC, Sohn HY, George DB, Bailey LK (1989) Mathematical modeling of minor element behavior during flash smelting of copper concentrates and flash converting of copper mattes. Metall Trans B 20:39–51

    Article  Google Scholar 

  3. Seo KW, Sohn HY (1991) Mathematical modeling of sulfide flash smelting process: part III. Volatilization of minor elements. Metall Trans B 22(6):791–799

    Article  Google Scholar 

  4. Chen C, Zhang L, Jahanshahi S (2010) Thermodynamic modeling of arsenic in copper smelting processes. Metall Mater Trans B 41:1175–1185

    Article  CAS  Google Scholar 

  5. Chen C, Zhang L, Wright S, Jahanshahi S (2006) Thermodynamic modelling of minor elements in copper smelting processes. In: Sohn international symposium advanced processing of metals and materials, vol 1, pp 335–348

    Google Scholar 

  6. Tan P, Zhang C (1996) Effects of temperature on distribution behaviors of minor elements in copper flash smelting—computer simulation. Trans Nonferrous Met Soc China 6(4):38–41

    CAS  Google Scholar 

  7. Tan P, Zhang C (1997) Computer model of copper smelting process and distribution behaviours of accessory elements. J Cent South Univ Technol 4(1):36–41

    Article  Google Scholar 

  8. Tan P, Zhang C (1997) Influence of ratio of iron-to-silicon in slag on behaviors of associated elements during copper smelting. Shanghai Non-ferrous Metals 18(4)

    Google Scholar 

  9. Kim HG, Sohn HY (1997) Minor-element behavior and iron partition during the slag cleaning of copper converter slag under reducing conditions. Can Metall Q 26(1): 31–37

    Google Scholar 

  10. Kim HG, Sohn HY (1996) Thermodynamic modelling of minor-element behaviour in in-bath copper smelting and converting with calcium ferrite slag. Trans Instr Min Metall 105:151–163

    Google Scholar 

  11. Kim HG, Sohn HY (1991) Prediction of minor-element behavior in copper smelting and converting with submerged oxygen injection. EPD Congr 91:437–465

    Google Scholar 

  12. Davenport W, Jones D, King MJ, Partelpoeg EH (2003) Flash smelting: analysis, control and optimization, 2nd edn. TMS, Warrendale, pp 1–30

    Google Scholar 

  13. Yazawa A, Kameda A (1953) Copper smelting. I. Partial liquidus diagram for FeS-FeO-SiO2 system. Technol Rep Tohoku Univ 16:40–58

    Google Scholar 

  14. Yamaguchi K, Ueda S, Takeda Y (2005) Phase equilibrium and thermodynamic properties of SiO2-CaO-FeOx slags for copper smelting—research achievements of Professor Yoichi Takeda. Scand J Metall:164–174

    Article  CAS  Google Scholar 

  15. Takeda Y (2001) Copper solubility in SiO2-CaO-FeOx slag equilibrated with matte. High Temp Mater Process (Lond) 20(3–4):279–284

    CAS  Google Scholar 

  16. Chen M, Cui Z, Zhao B (2015) Slag chemistry of bottom blown copper smelting furnace at Dongying Fangyuan. In: 6th international symposium on high-temperature metallurgical proceeding, pp 257–264

    Google Scholar 

  17. Larouche P (2001) Minor elements in copper smelting and electrorefining. MSc thesis, McGill Universtiy, Montreal

    Google Scholar 

  18. Nakamura T, Toguri JM (1991) Interfacial phenomena in copper smelting processes. Copper 91(9):537–551

    Google Scholar 

  19. Shimpo R, Watanabe S, Goto S, Ogawa O (1983) An application of equilibrium calculations to the copper smelting operation. Adv Sulfide Smelt:295–316

    Google Scholar 

  20. Bale CW, Belisle E, Chartrand P, Decterov SA, Eriksson G, Gheribi A, Hack K, Jung I-H, Melancon J, Pelton AD, Petersen S, Robelin C (2014) Recent developments in FactSage thermochemical software and databases. In: Celebrating the megascale: proceedings of the extraction and processing division symposium on pyrometallurgy in honor of David G. C. Robertson, pp 141–148

    Google Scholar 

  21. Bale CW, Chartrand SA, Degterov SA, Eriksson G, Hack K, Ben Mahfoud R, Melancon J, Pelton AD, Petersen S (2012) FactSage thermochemical software and databases. Calphad 26(189–228):2002

    Google Scholar 

  22. Degterov S, Pelton A (1999) A thermodyanmic database for copper smelting and converting. Metall Mater Trans B 30:661–669

    Article  Google Scholar 

  23. Jak E, Hidayat T, Shishin D, Mehrjardi AF, Chen J, Hayes P (2017) Experimental and modelling research in support of energy savings and improved productivity in non-ferrous metal production and recycling. Proc EMC 2017:231–250

    Google Scholar 

  24. Cardona N, Coursol P, Mackey PJ, Parra R (2011) Physical chemistry of copper smelting slags and copper losses at the Paipote smelter part 1—thermodynamic modelling. Can Metall Q 50:318–329

    Article  CAS  Google Scholar 

  25. Tan P (2004) CuModel—a thermodynamic model and computer program of copper smelting and converting processes and its industrial applications. EPD Congr 2004:411–422

    Google Scholar 

  26. Gisby J, Taskinen P, Pihlasalo J, Li Z, Tyrer M, Pearce J, Avarmaa K, Björklund P, Davies H, Korpi M, Martin S, Pesonen L, Robinson J (2017) MTDATA and the prediction of phase equilibria in oxide systems: 30 years of industrial collaboration. Metall Mater Trans B 48:91–98

    Article  CAS  Google Scholar 

  27. Yazawa A, Kameda M (1954) Fundamental studies on copper smelting (II) solubilites of constituents of matte in slag. Tech Rep Tohoku Univ 19:1–22

    CAS  Google Scholar 

  28. Spira P, Themelis J (1969) The solubility of copper in slags. J Metals:35–42

    Article  CAS  Google Scholar 

  29. Imris I (1975) Thermodynamics of reducing copper losses in slags. Copper Metall Pract Theory Pap Meet:18–22

    Google Scholar 

  30. Jalkanen KH (1981) Copper and sulphur solubilities in silica saturated iron silicate slags from copper mattes. Scand J Metals 10:77–184

    Google Scholar 

  31. Geveci A, Rosenqvist T (1973) Equilibrium relations between liquid copper, iron-copper matte and iron silicate slag at 1250 °C. Miner Process Extr Metall 82C:193–201

    Google Scholar 

  32. Verordnung über Deponien und Langzeitlager-Deponieverordnung (DepV) (2009)

    Google Scholar 

  33. Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit. http://www.bmub.bund.de/fileadmin/Daten_BMU/Download_PDF/Abfallwirtschaft/mantelv_entwurf_bf.pdf. Accessed 27 Oct 2017

  34. Verordnung zum Schutz der Oberflächengewässer—Oberflächengewässerverordnung (OGewV) (2016)

    Google Scholar 

  35. Technische Lieferbedingungen für Wasserbausteine (2003)

    Google Scholar 

  36. Davennport WG, Partelpoeg EH (1989) Flash smelting analysis control and optimization. Pergamon Press

    Google Scholar 

  37. Schlesinger ME, King MJ, Sole KC, Davenport WG (2011) Extractive metallurgy of copper, 5th edn. Elsevier

    Google Scholar 

  38. Tan P, Zhang C (1998) Behaviours of accessory elements in copper pryometallurgy. Trans Nonferrous Met Soc China 8(1):114–119

    CAS  Google Scholar 

  39. Tan P, Zhang C (1997) Modeling of accessory element distribution in copper smelting process. Scand J Metall 26:115–122

    CAS  Google Scholar 

  40. Mackey PJ (1982) The physical chemistry of copper smelting slags—a review. Can Metall Q 21(3):221–260

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Klaffenbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klaffenbach, E., Alvear Flores, G.R.F., Guo, M., Blanpain, B. (2018). Thermodynamic Consideration of Copper Matte Smelting Conditions with Respect to Minor Element Removal and Slag Valorization Options. In: Davis, B., et al. Extraction 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95022-8_39

Download citation

Publish with us

Policies and ethics