Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7(1):19–29
CAS
CrossRef
Google Scholar
Goodenough JB, Park K-S (2013) The Li-Ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176
CAS
CrossRef
Google Scholar
Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0 < x<−1): A new cathode material for batteries of high energy density. Mater Res Bull 15(6):783–789
CAS
CrossRef
Google Scholar
Ozawa K (1994) Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ionics 69(3):212–221
CAS
CrossRef
Google Scholar
Bang HJ, Joachin H, Yang H, Amine K, Prakash J (2006) Contribution of the structural changes of LiNi0.8Co0.15Al0.05O2 cathodes on the exothermic reactions in Li-ion cells. J Electrochem Soc 153(4):A731–A737
CAS
CrossRef
Google Scholar
Schipper F, Erickson EM, Erk C, Shin J-Y, Chesneau FF, Aurbach D (2017) Review—recent advances and remaining challenges for lithium ion battery cathodes: I. Nickel-Rich, LiNixCoyMnzO2. J Electrochem Soc 164(1):A6220–A6228
CAS
CrossRef
Google Scholar
Blomgren GE (2017) The development and future of lithium ion batteries. J Electrochem Soc 164(1):A5019–A5025
CAS
CrossRef
Google Scholar
Whittingham MS (2014) Ultimate limits to intercalation reactions for lithium batteries. Chem Rev 114(23):11414–11443
CAS
CrossRef
Google Scholar
Zaghib K, Guerfi A, Hovington P, Vijh A, Trudeau M, Mauger A, Goodenough JB, Julien CM (2013) Review and analysis of nanostructured olivine-based lithium recheargeable batteries: status and trends. J Power Sources 232:357–369
CAS
CrossRef
Google Scholar
Wang J, Sun X (2012) Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ Sci 5(1):5163–5185
CAS
CrossRef
Google Scholar
Lee KT, Kan WH, Nazar LF (2009) Proof of intercrystallite ionic transport in LiMPO4 electrodes (M = Fe, Mn). J Am Chem Soc 131(17):6044–6045
CAS
CrossRef
Google Scholar
Nytén A, Abouimrane A, Armand M, Gustafsson T, Thomas JO (2005) Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem Commun 7(2):156–160
CrossRef
Google Scholar
Armand M (2000) Lithium insertion electrode materials based on orthosilicate derivatives. U.S. Patent 6 085 015
Google Scholar
Armstrong AR, Sirisopanaporn C, Adamson P, Billaud J, Dominko R, Masquelier C, Bruce PG (2014) Polymorphism in Li2MSiO4 (M = Fe, Mn): a variable temperature diffraction study. Z. Anorganische Allgemeine Chemie 640(6):1043–1049
CAS
CrossRef
Google Scholar
Eames C, Armstrong AR, Bruce PG, Islam MS (2012) Insights into changes in voltage and structure of Li2FeSiO4 polymorphs for lithium-ion batteries. Chem Mater 24(11):2155–2161
CAS
CrossRef
Google Scholar
Sirisopanaporn C, Masquelier C, Bruce PG, Armstrong AR, Dominko R (2011) Dependence of Li2FeSiO4 electrochemistry on structure. J Am Chem Soc 133(5):1263–1265
CAS
CrossRef
Google Scholar
Lu X, Chiu H-C, Arthur Z, Zhou J, Wang J, Chen N, Jiang D-T, Zaghib K, Demopoulos GP (2016) Li-ion storage dynamics in metastable nanostructured Li2FeSiO4 cathode: antisite-induced phase transition and lattice oxygen participation. J Power Sources 329:355–363
CAS
CrossRef
Google Scholar
Girish HN, Shao GQ (2015) Advances in high-capacity Li2MSiO4 (M = Mn, Fe Co, Ni,…) cathode materials for lithium-ion batteries. Rsc Adv 5(119):98666–98686
CAS
CrossRef
Google Scholar
Armstrong AR, Kuganathan N, Islam MS, Bruce PG (2011) Structure and lithium transport pathways in Li2FeSiO4 cathodes for lithium batteries. J Am Chem Soc 133(33):13031–13035
CAS
CrossRef
Google Scholar
Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53(2):117–166
CAS
CrossRef
Google Scholar
Suchanek WL, Lencka MM, Riman RE (2004) Chapter 18—Hydrothermal synthesis of ceramic materials A2—Palmer, Donald A. In: Fernández-Prini R, Harvey AH (eds) Aqueous systems at elevated temperatures and pressures. Academic Press, London, pp 717–744
CrossRef
Google Scholar
Byrappa K, Yoshimura M (2001) 4—Physical chemistry of hydrothermal growth of crystals. In: Handbook of hydrothermal technology. William Andrew Publishing Norwich, NY, pp 161–197
CrossRef
Google Scholar
Chen J (2013) A review of nanostructured lithium ion battery materials via low temperature synthesis. Recent Patent Nanotechnol 7(1):2–12
CAS
CrossRef
Google Scholar
Kumar A, Jayakumar OD, Naik VM, Nazri GA, Naik R (2016) Improved electrochemical properties of solvothermally synthesized Li2FeSiO4/C nanocomposites: a comparison between solvothermal and sol-gel methods. Solid State Ionics 294:15–20
CAS
CrossRef
Google Scholar
Paolella A, Bertoni G, Hovington P, Feng Z, Flacau R, Prato M, Colombo M, Marras S, Manna L, Turner S, Van Tendeloo G, Guerfi A, Demopoulos GP, Zaghib K (2015) Cation exchange mediated elimination of the Fe-antisites in the hydrothermal synthesis of LiFePO4. Nano Energy 16:256–267
CAS
CrossRef
Google Scholar
Chen J, Whittingham MS (2006) Hydrothermal synthesis of lithium iron phosphate. Electrochem Commun 8(5):855–858
CAS
CrossRef
Google Scholar
Vediappan K, Guerfi A, Gariépy V, Demopoulos GP, Hovington P, Trottier J, Mauger A, Zaghib K, Julien CM (2014) Effect of the stirring during the hydrothermal synthesis of C–LiFePO4. ECS Trans 58(14):67–72
CrossRef
Google Scholar
Dokko K, Koizumi S, Nakano H, Kanamura K (2007) Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K. J Mater Chem 17(45):4803
CAS
CrossRef
Google Scholar
Demopoulos GP (2009) Aqueous precipitation and crystallization for the production of particulate solids with desired properties. Hydrometallurgy 96(3):199–214
CAS
CrossRef
Google Scholar
Zeng Y, Demopoulos GP (2018) Morphology and defects controlled hydrothermal synthesis of Pmn21 Li2FeSiO4 for Li-ion battery application. (Submitted)
Google Scholar
Dominko R, Conte DE, Hanzel D, Gaberscek M, Jamnik J (2008) Impact of synthesis conditions on the structure and performance of Li2FeSiO4. J Power Sources 178(2):842–847
CAS
CrossRef
Google Scholar