Skip to main content
View expanded cover

Extraction 2018 pp 2555–2563Cite as

Hydrothermal Production of Lithium Metal Silicate Powders with Controlled Properties for Application to Li-ion Batteries

  • 114 Accesses

Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Lithium metal silicates (Li2MSiO4, M = Fe or Mn) composed of abundant and non-toxic elements are important cathode materials for Li-ion batteries (LIB). In contrast to solid-state or sol-gel methods, hydrothermal synthesis conducted in pressure reactors is a favorable processing route as it provides the potential for scalable production and is environmentally benign. However, the key is to control the precipitation reaction to obtain powders with desired properties to meet battery specifications. Through a systematic study, we have found that Li2MSiO4 with tunable size from 300 nm to 1.5 μm can be produced by adjusting precursor concentrations, temperature, and reaction time. Under optimum conditions, high purity Li2MSiO4 with minimum defects were successfully produced and examined as an LIB cathode. The use of complexing agents promoted the formation of unique hollow particles via the self-assembling of elongated crystals. A four-step formation mechanism is proposed based on extensive characterizations with XRD, HR-TEM, SEM, and Mössbauer spectroscopy.

Keywords

  • Lithium metal silicates
  • Hydrothermal synthesis
  • Li-ion batteries

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-95022-8_215
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   309.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-95022-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   399.99
Price excludes VAT (USA)
Hardcover Book
USD   549.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7(1):19–29

    CAS  CrossRef  Google Scholar 

  2. Goodenough JB, Park K-S (2013) The Li-Ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176

    CAS  CrossRef  Google Scholar 

  3. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0 < x<−1): A new cathode material for batteries of high energy density. Mater Res Bull 15(6):783–789

    CAS  CrossRef  Google Scholar 

  4. Ozawa K (1994) Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ionics 69(3):212–221

    CAS  CrossRef  Google Scholar 

  5. Bang HJ, Joachin H, Yang H, Amine K, Prakash J (2006) Contribution of the structural changes of LiNi0.8Co0.15Al0.05O2 cathodes on the exothermic reactions in Li-ion cells. J Electrochem Soc 153(4):A731–A737

    CAS  CrossRef  Google Scholar 

  6. Schipper F, Erickson EM, Erk C, Shin J-Y, Chesneau FF, Aurbach D (2017) Review—recent advances and remaining challenges for lithium ion battery cathodes: I. Nickel-Rich, LiNixCoyMnzO2. J Electrochem Soc 164(1):A6220–A6228

    CAS  CrossRef  Google Scholar 

  7. Blomgren GE (2017) The development and future of lithium ion batteries. J Electrochem Soc 164(1):A5019–A5025

    CAS  CrossRef  Google Scholar 

  8. Whittingham MS (2014) Ultimate limits to intercalation reactions for lithium batteries. Chem Rev 114(23):11414–11443

    CAS  CrossRef  Google Scholar 

  9. Zaghib K, Guerfi A, Hovington P, Vijh A, Trudeau M, Mauger A, Goodenough JB, Julien CM (2013) Review and analysis of nanostructured olivine-based lithium recheargeable batteries: status and trends. J Power Sources 232:357–369

    CAS  CrossRef  Google Scholar 

  10. Wang J, Sun X (2012) Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ Sci 5(1):5163–5185

    CAS  CrossRef  Google Scholar 

  11. Lee KT, Kan WH, Nazar LF (2009) Proof of intercrystallite ionic transport in LiMPO4 electrodes (M = Fe, Mn). J Am Chem Soc 131(17):6044–6045

    CAS  CrossRef  Google Scholar 

  12. Nytén A, Abouimrane A, Armand M, Gustafsson T, Thomas JO (2005) Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem Commun 7(2):156–160

    CrossRef  Google Scholar 

  13. Armand M (2000) Lithium insertion electrode materials based on orthosilicate derivatives. U.S. Patent 6 085 015

    Google Scholar 

  14. Armstrong AR, Sirisopanaporn C, Adamson P, Billaud J, Dominko R, Masquelier C, Bruce PG (2014) Polymorphism in Li2MSiO4 (M = Fe, Mn): a variable temperature diffraction study. Z. Anorganische Allgemeine Chemie 640(6):1043–1049

    CAS  CrossRef  Google Scholar 

  15. Eames C, Armstrong AR, Bruce PG, Islam MS (2012) Insights into changes in voltage and structure of Li2FeSiO4 polymorphs for lithium-ion batteries. Chem Mater 24(11):2155–2161

    CAS  CrossRef  Google Scholar 

  16. Sirisopanaporn C, Masquelier C, Bruce PG, Armstrong AR, Dominko R (2011) Dependence of Li2FeSiO4 electrochemistry on structure. J Am Chem Soc 133(5):1263–1265

    CAS  CrossRef  Google Scholar 

  17. Lu X, Chiu H-C, Arthur Z, Zhou J, Wang J, Chen N, Jiang D-T, Zaghib K, Demopoulos GP (2016) Li-ion storage dynamics in metastable nanostructured Li2FeSiO4 cathode: antisite-induced phase transition and lattice oxygen participation. J Power Sources 329:355–363

    CAS  CrossRef  Google Scholar 

  18. Girish HN, Shao GQ (2015) Advances in high-capacity Li2MSiO4 (M = Mn, Fe Co, Ni,…) cathode materials for lithium-ion batteries. Rsc Adv 5(119):98666–98686

    CAS  CrossRef  Google Scholar 

  19. Armstrong AR, Kuganathan N, Islam MS, Bruce PG (2011) Structure and lithium transport pathways in Li2FeSiO4 cathodes for lithium batteries. J Am Chem Soc 133(33):13031–13035

    CAS  CrossRef  Google Scholar 

  20. Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53(2):117–166

    CAS  CrossRef  Google Scholar 

  21. Suchanek WL, Lencka MM, Riman RE (2004) Chapter 18—Hydrothermal synthesis of ceramic materials A2—Palmer, Donald A. In: Fernández-Prini R, Harvey AH (eds) Aqueous systems at elevated temperatures and pressures. Academic Press, London, pp 717–744

    CrossRef  Google Scholar 

  22. Byrappa K, Yoshimura M (2001) 4—Physical chemistry of hydrothermal growth of crystals. In: Handbook of hydrothermal technology. William Andrew Publishing Norwich, NY, pp 161–197

    CrossRef  Google Scholar 

  23. Chen J (2013) A review of nanostructured lithium ion battery materials via low temperature synthesis. Recent Patent Nanotechnol 7(1):2–12

    CAS  CrossRef  Google Scholar 

  24. Kumar A, Jayakumar OD, Naik VM, Nazri GA, Naik R (2016) Improved electrochemical properties of solvothermally synthesized Li2FeSiO4/C nanocomposites: a comparison between solvothermal and sol-gel methods. Solid State Ionics 294:15–20

    CAS  CrossRef  Google Scholar 

  25. Paolella A, Bertoni G, Hovington P, Feng Z, Flacau R, Prato M, Colombo M, Marras S, Manna L, Turner S, Van Tendeloo G, Guerfi A, Demopoulos GP, Zaghib K (2015) Cation exchange mediated elimination of the Fe-antisites in the hydrothermal synthesis of LiFePO4. Nano Energy 16:256–267

    CAS  CrossRef  Google Scholar 

  26. Chen J, Whittingham MS (2006) Hydrothermal synthesis of lithium iron phosphate. Electrochem Commun 8(5):855–858

    CAS  CrossRef  Google Scholar 

  27. Vediappan K, Guerfi A, Gariépy V, Demopoulos GP, Hovington P, Trottier J, Mauger A, Zaghib K, Julien CM (2014) Effect of the stirring during the hydrothermal synthesis of C–LiFePO4. ECS Trans 58(14):67–72

    CrossRef  Google Scholar 

  28. Dokko K, Koizumi S, Nakano H, Kanamura K (2007) Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K. J Mater Chem 17(45):4803

    CAS  CrossRef  Google Scholar 

  29. Demopoulos GP (2009) Aqueous precipitation and crystallization for the production of particulate solids with desired properties. Hydrometallurgy 96(3):199–214

    CAS  CrossRef  Google Scholar 

  30. Zeng Y, Demopoulos GP (2018) Morphology and defects controlled hydrothermal synthesis of Pmn21 Li2FeSiO4 for Li-ion battery application. (Submitted)

    Google Scholar 

  31. Dominko R, Conte DE, Hanzel D, Gaberscek M, Jamnik J (2008) Impact of synthesis conditions on the structure and performance of Li2FeSiO4. J Power Sources 178(2):842–847

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgements

This research is supported by a Hydro-Québec/NSERC CRD grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George P. Demopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Zeng, Y., Zaghib, K., Demopoulos, G.P. (2018). Hydrothermal Production of Lithium Metal Silicate Powders with Controlled Properties for Application to Li-ion Batteries. In: , et al. Extraction 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95022-8_215

Download citation