Skip to main content

Enhancing the Photoluminescence of GaSb/GaAs QD Nano-Structures

  • Chapter
  • First Online:
Book cover Enhancing the Light Output of Solid-State Emitters

Part of the book series: Springer Theses ((Springer Theses))

  • 321 Accesses

Abstract

This chapter describes how individual type-II like GaSb/GaAs quantum rings can be isolated to allow observations of individual rings with exciton linewidths of 200 µeV. The power dependent blueshift of individual peaks is studied and compared to the ensemble’s blueshift, to gain a better understanding of the underlying physics of this system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bimberg, D., & Pohl, U. W. (2011). Quantum dots: Promises and accomplishments. Materials Today, 14, 388–397.

    Article  Google Scholar 

  2. Unitt, D. (2005). Enhanced single photon emission from a quantum dot in a semiconductor microcavity. Cambridge.

    Google Scholar 

  3. Sonia, B., Kelley, R., & Jelena, V. (2012). Engineered quantum dot single-photon sources. Reports on Progress in Physics, 75, 126503.

    Article  Google Scholar 

  4. Schlehahn, A., et al. (2016). Generating single photons at gigahertz modulation-speed using electrically controlled quantum dot microlenses. Applied Physics Letters, 108, 021104.

    Article  ADS  Google Scholar 

  5. Unitt, D. C., et al. (2005). Quantum dots as single-photon sources for quantum information processing. Journal of Optics B: Quantum and Semiclassical Optics, 7, S129.

    Article  Google Scholar 

  6. Rivoire, K., et al. (2011). Fast quantum dot single photon source triggered at telecommunications wavelength. Applied Physics Letters, 98, 083105.

    Article  ADS  Google Scholar 

  7. Valéry, Z., Thomas, A., & Oliver, B. (2004). Quantum optics with single quantum dot devices. New Journal of Physics, 6, 96.

    Article  MathSciNet  Google Scholar 

  8. Hodgson, P. D., et al. (2013). Blueshifts of the emission energy in type-II quantum dot and quantum ring nanostructures. Journal of Applied Physics, 114, 073519.

    Article  ADS  Google Scholar 

  9. Liu, H., Wang, Q., Chen, J., Liu, K., & Ren, X. (2016). MOCVD growth and characterization of multi-stacked InAs/GaAs quantum dots on misoriented Si(100) emitting near 1.3 μm. Journal of Crystal Growth, 455, 168–171.

    Article  ADS  Google Scholar 

  10. Krier, A., Huang, X. L., & Hammiche, A. (2001). Liquid phase epitaxial growth and morphology of InSb quantum dots. Journal of Physics. D. Applied Physics, 34, 874.

    Article  ADS  Google Scholar 

  11. Nicoll, C. A., et al. (2009). MBE growth of In(Ga)As quantum dots for entangled light emission. Journal of Crystal Growth, 311, 1811–1814.

    Article  ADS  Google Scholar 

  12. Bimberg, D., Grundmann, M. & Ledentsov, N. N. (1999) Quantum dot heterostructures. Wiley.

    Google Scholar 

  13. Watanabe, S., et al. (2004). Dense uniform arrays of site-controlled quantum dots grown in inverted pyramids. Applied Physics Letters, 84, 2907–2909.

    Article  ADS  Google Scholar 

  14. Garcı́a, J. M. et al. (2014). Intermixing and shape changes during the formation of InAs self-assembled quantum dots. Applied Physics Letters, 71, 2014–2016.

    Article  ADS  Google Scholar 

  15. Kobayashi, S., Jiang, C., Kawazu, T., & Sakaki, H. (2004). Self-Assembled Growth of GaSb Type II Quantum Ring Structures. Japanese Journal of Applied Physics, 43, L662.

    Article  ADS  Google Scholar 

  16. Timm, R., et al. (2008). Self-Organized Formation of GaSb/GaAs Quantum Rings. Physical Review Letters, 101, 256101.

    Article  ADS  Google Scholar 

  17. Smakman, E. P., et al. (2012). GaSb/GaAs quantum dot formation and demolition studied with cross-sectional scanning tunneling microscopy. Applied Physics Letters, 100, 142116.

    Article  ADS  Google Scholar 

  18. Klenovský, P., Steindl, P., & Geffroy, D. (2017). Excitonic structure and pumping power dependent emission blue-shift of type-II quantum dots. Scientific Reports, 7, 45568.

    Article  ADS  Google Scholar 

  19. Hatami, F., et al. (1995). Radiative recombination in type-II GaSb/GaAs quantum dots. Applied Physics Letters, 67, 656–658.

    Article  ADS  Google Scholar 

  20. Marent, A., et al. (2007). 10^(6) years extrapolated hole storage time in GaSb∕AlAs quantum dots. Applied Physics Letters, 91, 242109.

    Article  ADS  Google Scholar 

  21. Hayne, M., et al. (2003). Electron localization by self-assembled GaSb/GaAs quantum dots. Applied Physics Letters, 82, 4355–4357.

    Article  ADS  Google Scholar 

  22. Lin, S.-Y., et al. (2010). Room-temperature operation type-II GaSb/GaAs quantum-dot infrared light-emitting diode. Applied Physics Letters, 96, 123503.

    Article  ADS  Google Scholar 

  23. Lin, W.-H., Wang, K.-W., Chang, S.-W., Shih, M.-H., & Lin, S.-Y. (2012). Type-II GaSb/GaAs coupled quantum rings: Room-temperature luminescence enhancement and recombination lifetime elongation for device applications. Applied Physics Letters, 101, 031906.

    Article  ADS  Google Scholar 

  24. Hanbury Brown, R., & Twiss, R. Q. (1956). The question of correlation between photons in coherent light rays. Nature, 178, 1447–1448.

    Article  ADS  Google Scholar 

  25. Young, M. P., et al. (2014). Photoluminescence studies of individual and few GaSb/GaAs quantum rings. AIP Advances, 4, 117127.

    Article  ADS  Google Scholar 

  26. Vamivakas, A. N., et al. (2011). Nanoscale optical electrometer. Physical Review Letters, 107, 166802.

    Article  ADS  Google Scholar 

  27. Houel, J., et al. (2012). Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby ingaas quantum dot. Physical Review Letters, 108, 107401.

    Article  ADS  Google Scholar 

  28. Young, R. J., et al. (2012). Optical observation of single-carrier charging in type-II quantum ring ensembles. Applied Physics Letters, 100, 082104.

    Article  ADS  Google Scholar 

  29. Iikawa, F., et al. (2004). Optical properties of type-I and II quantum dots. Brazilian Journal of Physics, 34, 555–559.

    Article  ADS  Google Scholar 

  30. Carrington, P. J., et al. (2013). Long-wavelength photoluminescence from stacked layers of high-quality type-II GaSb/GaAs quantum rings. Crystal Growth & Design, 13, 1226–1230.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Woodhead .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Woodhead, C. (2018). Enhancing the Photoluminescence of GaSb/GaAs QD Nano-Structures. In: Enhancing the Light Output of Solid-State Emitters. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-95013-6_4

Download citation

Publish with us

Policies and ethics