Skip to main content

Background and Theory

  • Chapter
  • First Online:
Enhancing the Light Output of Solid-State Emitters

Part of the book series: Springer Theses ((Springer Theses))

  • 347 Accesses

Abstract

This section addresses some of the key concepts in solid state physics that are important to understand when considering the light emission of a semiconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kittel, C. (1976). Introduction to solid state physics (5th ed.). New York: Wiley.

    Google Scholar 

  2. Jaros, M. (1989). Physics and applications of semiconductor microstructures. Oxford, England: Clarendon Press.

    Google Scholar 

  3. Pérez-Ríos, J., & Sanz, A. S. (2013). How does a magnetic trap work? American Journal of Physics, 81, 836–843.

    Article  ADS  Google Scholar 

  4. Rae, A. I. M. (2008). Quantum mechanics (5th ed.). New York: Taylor & Francis.

    Google Scholar 

  5. Reed, M. A., et al. (1986). Spatial quantization in GaAs–AlGaAs multiple quantum dots. Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, 4, 358–360.

    Article  ADS  Google Scholar 

  6. Watanabe, S., et al. (2004). Dense uniform arrays of site-controlled quantum dots grown in inverted pyramids. Applied Physics Letters, 84, 2907–2909.

    Article  ADS  Google Scholar 

  7. Dimastrodonato, V., Mereni, L. O., Young, R. J., & Pelucchi, E. (2010). Growth and structural characterization of pyramidal site-controlled quantum dots with high uniformity and spectral purity. physica status solidi (b), 247, 1862–1866.

    Article  ADS  Google Scholar 

  8. Dekel, E., et al. (1998). Multi-exciton spectroscopy of a single self assembled quantum dot. Physical Review Letters, 80, 4991.

    Article  ADS  Google Scholar 

  9. Trevisi, G., et al. (2013). The effect of high-In content capping layers on low-density bimodal-sized InAs quantum dots. Journal of Applied Physics, 113, 194306.

    Article  ADS  Google Scholar 

  10. Tadić, M., Peeters, F. M., Janssens, K. L., Korkusiński, M., & Hawrylak, P. (2002). Strain and band edges in single and coupled cylindrical InAs/GaAs and InP/InGaP self-assembled quantum dots. Journal of Applied Physics, 92, 5819–5829.

    Article  ADS  Google Scholar 

  11. Songmuang, R., Kiravittaya, S., Sawadsaringkarn, M., Panyakeow, S., & Schmidt, O. G. (2003). Photoluminescence investigation of low-temperature capped self-assembled InAs/GaAs quantum dots. Journal of Crystal Growth, 251, 166–171.

    Article  ADS  Google Scholar 

  12. Bayer, M., et al. (2002). Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Physical Review B, 65.

    Google Scholar 

  13. Bimberg, D., Grundmann, M., & Ledentsov, N. N. (1999). Quantum dot heterostructures. Wiley.

    Google Scholar 

  14. Bimberg, D., & Pohl, U. W. (2011). Quantum dots: Promises and accomplishments. Materials Today, 14, 388–397.

    Article  Google Scholar 

  15. Hodgson, P. D., et al. (2013). Blueshifts of the emission energy in type-II quantum dot and quantum ring nanostructures. Journal of Applied Physics, 114, 073519.

    Article  ADS  Google Scholar 

  16. Klenovský, P., Steindl, P., & Geffroy, D. (2017). Excitonic structure and pumping power dependent emission blue-shift of type-II quantum dots. Scientific Reports, 7, 45568.

    Article  ADS  Google Scholar 

  17. Müller-Kirsch, L., et al. (2001). Many-particle effects in type II quantum dots. Applied Physics Letters, 78, 1418–1420.

    Article  ADS  Google Scholar 

  18. Gradkowski, K., et al. (2012). Coulomb-induced emission dynamics and self-consistent calculations of type-II Sb-containing quantum dot systems. Physical Review B, 85, 035432.

    Article  ADS  Google Scholar 

  19. Sun, C. K., et al. (1996). Optical investigations of the dynamic behavior of GaSb/GaAs quantum dots. Applied Physics Letters, 68, 1543–1545.

    Article  ADS  Google Scholar 

  20. Ding, X., et al. (2016). On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Physical Review Letters, 116, 020401.

    Article  ADS  Google Scholar 

  21. Xia, F., Wang, H., Xiao, D., Dubey, M., & Ramasubramaniam, A. (2014). Two-dimensional material nanophotonics. Nature Photonics, 8, 899–907.

    Article  ADS  Google Scholar 

  22. Mak, K. F., & Shan, J. (2016). Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nature Photonics, 10, 216–226.

    Article  ADS  Google Scholar 

  23. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., & Strano, M. S. (2012). Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 7, 699–712.

    Article  ADS  Google Scholar 

  24. Chhowalla, M., et al. (2013). The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 5, 263–275.

    Article  ADS  Google Scholar 

  25. Huang, J., Hoang, T. B., & Mikkelsen, M. H. (2016). Probing the origin of excitonic states in monolayer WSe2. Scientific Reports, 6, 22414.

    Article  ADS  Google Scholar 

  26. Yan, T., Qiao, X., Liu, X., Tan, P., & Zhang, X. (2014). Photoluminescence properties and exciton dynamics in monolayer WSe2. Applied Physics Letters, 105, 101901.

    Article  ADS  Google Scholar 

  27. Xu, X., Yao, W., Xiao, D., & Heinz, T. F. (2014). Spin and pseudospins in layered transition metal dichalcogenides. Nature Physics, 10, 343–350.

    Article  ADS  Google Scholar 

  28. Neumann, A., et al. (2017). Opto-valleytronic imaging of atomically thin semiconductors. Nature Nanotechnology, 12, 329–334.

    Article  ADS  Google Scholar 

  29. Novoselov, K. S., et al. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102, 10451–10453.

    Article  ADS  Google Scholar 

  30. Novoselov, K. S., et al. (2004). Electric field effect in atomically thin carbon films. Science, 306, 666–669.

    Article  ADS  Google Scholar 

  31. Gutiérrez, H. R., et al. (2013). Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Letters, 13, 3447–3454.

    Article  ADS  Google Scholar 

  32. Cain, J. D., Shi, F., Wu, J., & Dravid, V. P. (2016). Growth mechanism of transition metal dichalcogenide monolayers: the role of self-seeding fullerene nuclei. ACS Nano, 10, 5440–5445.

    Article  Google Scholar 

  33. Kaplan, D., et al. (2016). Excitation intensity dependence of photoluminescence from monolayers of MoS2 and WS2/MoS2 heterostructures. 2D Materials, 3.

    Google Scholar 

  34. Withers, F., et al. (2015). Light-emitting diodes by band-structure engineering in van derWaals heterostructures. Nature Materials, 14, 301–306.

    Article  ADS  Google Scholar 

  35. Koperski, M., et al. (2015). Single photon emitters in exfoliated WSe2 structures. Nature Nanotechnology, 10, 503–506.

    Article  ADS  Google Scholar 

  36. Palacios-Berraquero, C., et al. (2016). Atomically thin quantum light-emitting diodes. Nature Communications, 7, 12978.

    Article  ADS  Google Scholar 

  37. Splendiani, A., et al. (2010). Emerging photoluminescence in monolayer MoS2. Nano Letters, 10, 1271–1275.

    Article  ADS  Google Scholar 

  38. Qian, W., Ghislain, L. P., & Elings, V. B. (2000). Imaging with solid immersion lenses, spatial resolution, and applications. Proceedings of the IEEE, 88, 1491–1498.

    Article  Google Scholar 

  39. Serrels, K. A., et al. (2008). Solid immersion lens applications for nanophotonic devices. Journal of Nanophotonics, 2, 021829–021854.

    Google Scholar 

  40. Sung, H.-Y., et al. (2014). Fabrication of mounting device to apply solid immersion lens to infra-red microscopy. International Journal of Precision Engineering and Manufacturing, 15, 375–379.

    Article  Google Scholar 

  41. Henzie, J., Lee, J., Lee, M. H., Hasan, W., & Odom, T. (2009). Nanofabrication of plasmonic structures. Annual Review of Physical Chemistry, 60, 147–165.

    Article  ADS  Google Scholar 

  42. Born, B., Landry, E. L., & Holzman, J. F. (2010). Electrodispensing of microspheroids for lateral refractive and reflective photonic elements. IEEE Photonics Journal, 2, 873–883.

    Article  Google Scholar 

  43. Lee, C. C., Hsiao, S. Y., & Fang, W. TRANSDUCERS 2009—International Solid-State Sensors, Actuators and Microsystems Conference (pp. 2086–2089).

    Google Scholar 

  44. Jin, X., Guerrero, D., Klukas, R., & Holzman, J. F. (2014). Microlenses with tuned focal characteristics for optical wireless imaging. Applied Physics Letters, 105, 031102.

    Article  ADS  Google Scholar 

  45. Purcell, E. M. (1946). Spontaneous emission probabilities at radio frequencies. Physical Review, 69, 681.

    Article  Google Scholar 

  46. Unitt, D. (2005). Enhanced single photon emission from a quantum dot in a semiconductor microcavity. Cambridge.

    Google Scholar 

  47. Unitt, D. C., et al. (2005). Quantum dots as single-photon sources for quantum information processing. Journal of Optics B: Quantum and Semiclassical Optics, 7, S129.

    Article  Google Scholar 

  48. Bennett, A. J., et al. (2005). Microcavity single-photon-emitting diode. Applied Physics Letters, 86, 181102.

    Article  ADS  Google Scholar 

  49. Bennett, A. J., Unitt, D. C., Atkinson, P., Ritchie, D. A., & Shields, A. J. (2005). High-efficiency single-photon sources based on InAs/GaAs quantum dots in pillar microcavities. Physica E: Low-dimensional Systems and Nanostructures, 26, 391–394.

    Article  ADS  Google Scholar 

  50. Bennett, A. J., Unitt, D. C., Shields, A. J., Atkinson, P., & Ritchie, D. A. (2005). Influence of exciton dynamics on the interference of two photons from a microcavity single-photon source. Optics Express, 13, 7772.

    Article  ADS  Google Scholar 

  51. Maier, S. A. (2007). Plasmonics: Fundamentals and applications. Springer.

    Chapter  Google Scholar 

  52. Wang, Z., et al. (2016). Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures. Nature Communications, 7.

    Article  ADS  Google Scholar 

  53. Lumdee, C., Yun, B., & Kik, P. G. (2014). Gap-plasmon enhanced gold nanoparticle photoluminescence. ACS Photonics, 1, 1224–1230.

    Article  Google Scholar 

  54. Sobhani, A., et al. (2014). Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells. Applied Physics Letters, 104, 031112.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Woodhead .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Woodhead, C. (2018). Background and Theory. In: Enhancing the Light Output of Solid-State Emitters. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-95013-6_2

Download citation

Publish with us

Policies and ethics