Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 315 Accesses

Abstract

Technologies involving the generation of light are becoming increasingly important in our everyday lives. We rely on telecom lasers to transfer our data, when we want to access the internet (Renner in IEEE J Quantum Electron 23:641, 1987, [1]; Arafin et al. in IEEE J Sel Top Quantum Electron 23:1–9, 2017, [2]), energy efficient LEDs to light our homes (Anikeeva et al. in Nano Lett 9:2532–2536, 2009, [3]; Shirasaki et al. in Nat Photonics 7:13–23, 2013, [4]) and recently organic/2D materials are enabling ultra-thin flexible LED’s and smart phone screens (Ahn and Hong in Nat Nanotechnol 9:737–738, 2014, [5]; Han et al. in Nat Photonics 6:105–110, 2012, [6]). All these examples are classical light sources; they emit a large number of photons which can be considered as a classical wave, with a higher intensity corresponding to the square of the amplitude of the wave increasing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Renner, D. (1987). Long-wavelength semiconductor lasers. IEEE Journal of Quantum Electronics, 23, 641.

    Article  ADS  Google Scholar 

  2. Arafin, S., Morrison, G. B., Mashanovitch, M. L., Johansson, L. A., & Coldren, L. A. (2017). Compact low-power consumption single-mode coupled cavity lasers. IEEE Journal of Selected Topics in Quantum Electronics, 23, 1–9.

    Article  Google Scholar 

  3. Anikeeva, P. O., Halpert, J. E., Bawendi, M. G., & Bulović, V. (2009). Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Letters, 9, 2532–2536.

    Article  ADS  Google Scholar 

  4. Shirasaki, Y., Supran, G. J., Bawendi, M. G., & Bulovic, V. (2013). Emergence of colloidal quantum-dot light-emitting technologies. Nature Photonics, 7, 13–23.

    Article  ADS  Google Scholar 

  5. Ahn, J.-H., & Hong, B. H. (2014). Graphene for displays that bend. Nature Nanotechnology, 9, 737–738.

    Article  ADS  Google Scholar 

  6. Han, T.-H., et al. (2012). Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nature Photonics, 6, 105–110.

    Article  ADS  Google Scholar 

  7. Kok, P., et al. (2007). Linear optical quantum computing with photonic qubits. Reviews of Modern Physics, 79, 135–174 (2007).

    Article  ADS  Google Scholar 

  8. Rae, A. I. M. (2008). Quantum mechanics (5th ed.). New York: Taylor & Francis.

    Google Scholar 

  9. Ladd, T. D., et al. (2010). Quantum computers. Nature, 464, 45.

    Article  ADS  Google Scholar 

  10. Mishra, V. K. (2016). An introduction to quantum communication.

    Google Scholar 

  11. Fehr, S. (2010). Quantum cryptography. Foundations of Physics, 40, 494–531.

    Article  ADS  MathSciNet  Google Scholar 

  12. Economist. (2017). The Economist. Technology Quarterly: Here, there and everywhere. http://www.economist.com/news/essays/21717782-quantum-technology-beginning-come-its-own.

  13. Lo, H.-K., Curty, M., & Tamaki, K. (2014). Secure quantum key distribution. Nature Photonics, 8, 595–604.

    Article  ADS  Google Scholar 

  14. Identity Theft resource center. (2017). Data breach reports: 2016 end of year report. http://www.idtheftcenter.org/images/breach/2016/DataBreachReport_2016.pdf.

  15. Information is beautiful. (2017). World’s biggest data breaches. http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/.

  16. O’Brien, J. L. (2007). Optical quantum computing. Science, 318, 1567–1570.

    Article  ADS  Google Scholar 

  17. Santori, C., Fattal, D., Vuckovic, J., Solomon, G. S., & Yamamoto, Y. (2002). Indistinguishable photons from a single-photon device. Nature, 419, 594–597.

    Article  ADS  Google Scholar 

  18. McIntosh, A., & Itzler, M. (2014). Single-photon detection, generation, and applications. Optical Engineering, 53, 081901.

    Article  Google Scholar 

  19. Chunnilall, C. J., Degiovanni, I. P., Kück, S., Müller, I., & Sinclair, A. G. (2014). Metrology of single-photon sources and detectors: A review. Optical Engineering, 53, 081910.

    Article  ADS  Google Scholar 

  20. Rozema, L. A., et al. (2014). Scalable spatial superresolution using entangled photons. Physical Review Letters, 112, 223602.

    Article  ADS  Google Scholar 

  21. Israel, Y., Tenne, R., Oron, D., & Silberberg, Y. (2017). Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera. Nature Communications, 8, 14786.

    Article  ADS  Google Scholar 

  22. Brassard, G., Lütkenhaus, N., Mor, T., & Sanders, B. C. (2000). Limitations on practical quantum cryptography. Physical Review Letters, 85, 1330–1333.

    Article  ADS  Google Scholar 

  23. Aharonovich, I., Englund, D., & Toth, M. (2016). Solid-state single-photon emitters. Nature Photonics, 10, 631–641.

    Article  ADS  Google Scholar 

  24. Ferlaino, F. (2014). Molecular physics: Complexity trapped by simplicity. Nature, 512, 261–262.

    Article  ADS  Google Scholar 

  25. Unitt, D. C., et al. (2005). Quantum dots as single-photon sources for quantum information processing. Journal of Optics B: Quantum and Semiclassical Optics, 7, S129.

    Article  Google Scholar 

  26. Unitt, D. (2005). Enhanced single photon emission from a quantum dot in a semiconductor microcavity. Cambridge.

    Google Scholar 

  27. Kazimierczuk, T., et al. (2011). Single-photon emission from the natural quantum dots in the InAs/GaAs wetting layer. Physical Review B, 84.

    Google Scholar 

  28. Sonia, B., Kelley, R., & Jelena, V. (2012). Engineered quantum dot single-photon sources. Reports on Progress in Physics, 75, 126503.

    Article  Google Scholar 

  29. Bennett, A. J., Unitt, D. C., Atkinson, P., Ritchie, D. A., & Shields, A. J. (2005). High-efficiency single-photon sources based on InAs/GaAs quantum dots in pillar microcavities. Physica E: Low-dimensional Systems and Nanostructures, 26, 391–394.

    Article  ADS  Google Scholar 

  30. Koperski, M., et al. (2015). Single photon emitters in exfoliated WSe2 structures. Nature Nanotechnology, 10, 503–506.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Woodhead .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Woodhead, C. (2018). Introduction. In: Enhancing the Light Output of Solid-State Emitters. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-95013-6_1

Download citation

Publish with us

Policies and ethics