Skip to main content

Assessment and Treatment of Prenatally Exposed Infants and Children

  • Chapter
  • First Online:
Pediatric Neuropsychiatry
  • 1097 Accesses

Abstract

The majority of substance-exposed infants endure the aftereffects from in utero exposure to multiple potentially harmful agents. In addition, parental substance use and prenatal substance exposure very often co-occur with other psychosocial stressors. Thus, it can be difficult for the practitioner to tease apart the direct neurological effects of prenatal substance exposure from those caused by other related factors such as prematurity, low birth weight, continued parental substance use, chronic psychosocial stress, inconsistent caregiving, low socioeconomic status, trauma, and neglect. Therefore, it is necessary for the practitioner to have a solid understanding of the neurobehavioral effects of the substance(s) to which a patient has been exposed, as well as the impact of psychosocial stressors in the family’s life. This chapter presents two case studies which highlight the complex neuropsychiatric interaction of prenatal exposure and environmental stress in the assessment and treatment of prenatally exposed infants and children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Konijnenberg C, Melinder A. Prenatal exposure to methadone and buprenorphine: a review of the potential effects on cognitive development. Child Neuropsychol. 2011;17(5):495–519.

    Article  Google Scholar 

  2. Nekhayeva I, Nanovskaya T, Deshmukh S, Zharikova O, Hankins G, Ahmed M. Bidirectional transfer of methadone across human placenta. Biochem Pharmacol [serial online]. 2005;69(1):187–97.

    Article  CAS  Google Scholar 

  3. Kocherlakota P. Neonatal abstinence syndrome. Pediatrics. 2014;134(2):547–61.

    Article  Google Scholar 

  4. Velez M, Jansson L. The opioid dependent mother and newborn dyad: non-pharmacologic care. J Addict Med. 2008;2(3):113–20.

    Article  Google Scholar 

  5. Jansson L, Velez M, Harrow C. The opioid-exposed newborn: assessment and pharmacologic management. J Opioid Manag. 2009;5(1):47–55.

    Article  Google Scholar 

  6. Finnegan L, Connaughton JFJ, Kron R, Emich J. Neonatal abstinence syndrome: assessment and management. Addict Dis. 1975;2(1):141–58.

    CAS  PubMed  Google Scholar 

  7. Powell B, Cooper G, Hoffman K, Marvin B. The circle of security intervention: enhancing attachment in early parent-child relationships, vol. 2014. New York: Guilford Press; 2014.

    Google Scholar 

  8. Suchman N. Mothering from the inside out. Zero Three. 2017;37(3):35–40.

    Google Scholar 

  9. Rutherford H, Potenza M, Mayes L. The neurobiology of addiction and attachment. In: Parenting and substance abuse: developmental approaches to intervention. New York: Oxford University Press; 2013. p. 3–23.

    Google Scholar 

  10. Innamorati M, Sarracino D, Dazzi N. Motherhood constellation and representational change in pregnancy. Infant Ment Health J. 2010;31(4):379–96.

    Article  Google Scholar 

  11. Vreeswijk C, Rijk C, Maas A, Bakel H. Fathers’ and mothers’ representations of the infant: associations with prenatal risk factors. Infant Ment Health J. 2015;36(6):599–612.

    Article  Google Scholar 

  12. Sroufe L. Attachment and development: a prospective, longitudinal study from birth to adulthood. Attach Hum Dev. 2005;7(4):349–67.

    Article  Google Scholar 

  13. Firth A. Ocular sequelae from the illicit use of class a drugs. Br J Orthoptics. 2004;1:10–8.

    Google Scholar 

  14. Gill A, Oei J, Lewis N, Younan N, Kennedy I, Lui K. Strabismus in infants of opiate-dependent mothers. Acta Paediatr. 2003;92(3):379.

    Article  CAS  Google Scholar 

  15. Perkins SC, Finegood ED, Swain JE. Poverty and language development: roles of parenting and stress. Innov Clin Neurosci. 2013;10(4):10–9.

    PubMed  PubMed Central  Google Scholar 

  16. Tamis-LeMonda C, Bornstein M, Baumwell L. Maternal responsiveness and children's achievement of language milestones. Child Dev. 2001;72(3):748.

    Article  CAS  Google Scholar 

  17. Bayley N. Bayley scales of infant and toddler development. 3rd ed. Minneapolis: Pearson Assessments; 2005.

    Google Scholar 

  18. Van Scoyoc A, Harrison J, Fisher P. Beliefs and behaviors of pregnant women with addictions awaiting treatment initiation. Child Adolesc Soc Work J. 2017;34(1):65–79.

    Article  Google Scholar 

  19. Nygaard E, Slinning K, Moe V, Walhovd K. Cognitive function of youths born to mothers with opioid and poly-substance abuse problems during pregnancy. Child Neuropsychol. 2017;23(2):159–87.

    Article  Google Scholar 

  20. Pulsifer M, Radonovich K, Belcher H, Butz A. Intelligence and school readiness in preschool children with prenatal drug exposure. Child Neuropsychol. 2004;10(2):89–101.

    Article  Google Scholar 

  21. Lieberman A, Ghosh Ippen C, Van Horn P. Child-parent psychotherapy: 6-month follow-up of a randomized controlled trial. J Am Acad Child Adolesc Psychiatry. 2006;45(8):913–8.

    Article  Google Scholar 

  22. Beeghly M, Rose-Jacobs R, Martin B, Cabral H, Heeren T, Frank D. Level of intrauterine cocaine exposure and neuropsychological test scores in preadolescence: subtle effects on auditory attention and narrative memory. Neurotoxicol Teratol. 2014;45:1–17.

    Article  CAS  Google Scholar 

  23. Bridgett D, Mayes L. Development of inhibitory control among prenatally cocaine exposed and non-cocaine exposed youths from late childhood to early adolescence: the effects of gender and risk and subsequent aggressive behavior. Neurotoxicol Teratol. 2011;33(1):47–60.

    Article  CAS  Google Scholar 

  24. Rose-Jacobs R, Waber D, Frank D, et al. Intrauterine cocaine exposure and executive functioning in middle childhood. Neurotoxicol Teratol. 2009;31:159–68.

    Article  CAS  Google Scholar 

  25. Chaplin T, Visconti K, Mayes L, et al. Prenatal cocaine exposure differentially affects stress responses in girls and boys: associations with future substance use. Dev Psychopathol. 2014;27(1):163–80.

    Article  Google Scholar 

  26. Chaplin T, Fahy T, Sinha R, Mayes L. Emotional arousal in cocaine exposed toddlers: prediction of behavior problems. Neurotoxicol Teratol. 2009;31:275–82.

    Article  CAS  Google Scholar 

  27. Mayes L. A behavioral teratogenic model of the impact of prenatal cocaine exposure on arousal regulatory systems. Neurotoxicol Teratol [serial online]. 2002;24(3):385–95. Available from: PsycINFO, Ipswich, MA. Accessed 4 Jan 2018.

    Article  CAS  Google Scholar 

  28. Wechsler D. Wechsler preschool and primary scale of intelligence. 4th ed. Minneapolis: Pearson Assessments; 2012.

    Google Scholar 

  29. Gautam P, Warner T, Kan E, Sowell E. Executive function and cortical thickness in youths prenatally exposed to cocaine, alcohol and tobacco. Dev Cogn Neurosci. 2015;16:155–65.

    Article  Google Scholar 

  30. Richardson G, Goldschmidt L, Larkby C, Day N. Effects of prenatal cocaine exposure on adolescent development. Neurotoxicol Teratol. 2015;49:41–8.

    Article  CAS  Google Scholar 

  31. Singer L, Nelson S, Minnes S, et al. Prenatal cocaine exposure: drug and environmental effects at 9 years. J Pediatr. 2008;153(1):105–11.

    Article  CAS  Google Scholar 

  32. Blair C, Raver CC. School readiness and self-regulation: a developmental psychobiological approach. Annu Rev Psychol. 2015;66:711–31.

    Article  Google Scholar 

  33. Morrow C, Accornero V, Bandstra E, et al. Estimated risk of developing selected DSM-IV disorders among 5-year-old children with prenatal cocaine exposure. J Child Fam Stud. 2009;18(3):356–64.

    Article  Google Scholar 

  34. Nomura Y, Marks DJ, Halperin JM. Prenatal exposure to maternal and paternal smoking on attention deficit hyperactivity disorders symptoms and diagnosis in offspring. J Nerv Ment Dis. 2010;198(9):672–8.

    Article  Google Scholar 

  35. Milivojevic V, Fox H, Jayaram-Lindstrom N, Hermes G, Sinha R. Sex differences in guanfacine effects on stress-induced Stroop performance in cocaine dependence. Drug Alcohol Depend. 2017;179:275–9.

    Article  CAS  Google Scholar 

  36. Konijnenberg C, Melinder A. Executive function in preschool children prenatally exposed to methadone or buprenorphine. Child Neuropsychol. 2015;21(5):570–85.

    Article  Google Scholar 

  37. Konijnenberg C, Lund I, Melinder A. Behavioural outcomes of four-year-old children prenatally exposed to methadone or buprenorphine: a test of three risk models. Early Child Dev Care. 2015;185(10):1641–57.

    Article  Google Scholar 

  38. Hans S. Developmental consequences of prenatal exposure to methadone. Ann N Y Acad Sci. 1989;562:195–207.

    Article  CAS  Google Scholar 

  39. Gartstein M, Skinner M. Prenatal influences on temperament development: the role of environmental epigenetics. Dev Psychopathol. 2017;1:1–35.

    Google Scholar 

  40. Murgatroyd C, Spengler D. Epigenetics of early child development. Front Psychol. 2011;2:1–15.

    Google Scholar 

  41. Grewen K, Burchinal M, Gerig G, et al. Prenatal cocaine effects on brain structure in early infancy. NeuroImage. 2014;101:114–23.

    Article  CAS  Google Scholar 

  42. Yanai J, Huleihel R, Yaniv S, et al. Functional changes after prenatal opiate exposure related to opiate receptors’ regulated alterations in cholinergic innervation. Int J Neuropsychopharmacol. 2003;6(3):253–65.

    Article  CAS  Google Scholar 

  43. Vestal-Laborde A, Eschenroeder A, Bigbee J, Robinson S, Sato-Bigbee C. The opioid system and brain development: effects of methadone on the oligodendrocyte lineage and the early stages of myelination. Dev Neurosci. 2014;36(5):409–21.

    Article  CAS  Google Scholar 

  44. Pujol J, López-Sala A, Sans A, et al. Delayed myelination in children with developmental delay detected by volumetric MRI. NeuroImage. 2004;22:897–903.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Mayes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lowell, A., Mayes, L. (2019). Assessment and Treatment of Prenatally Exposed Infants and Children. In: Hauptman, A., Salpekar, J. (eds) Pediatric Neuropsychiatry. Springer, Cham. https://doi.org/10.1007/978-3-319-94998-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94998-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94997-0

  • Online ISBN: 978-3-319-94998-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics