Skip to main content

Thermal Transport

  • Chapter
  • First Online:
Thermal Transport in Semiconductors

Part of the book series: Springer Theses ((Springer Theses))

  • 663 Accesses

Abstract

A common way to understand the heat transfer is by considering that energy is transferred by a quantum called phonon. A phonon is a pseudo-particle with energy \(\hbar \omega \) and crystalline momentum \(\hbar \mathbf q \) obtained from the solution of the equations of motion of the atoms in a periodic crystal lattice. With this building blocks the first picture of thermal transport is that of phonons moving randomly at their constant group velocity in a Brownian motion. The macroscopic consequence of this microscopic picture is a diffusive heat transport governed by the Fourier law. This law has been successfully used in the last two centuries, but in the last decades divergences from classical behavior at reduced time and length scales have been observed. The first approach to understand these deviations was using an effective thermal conductivity depending on the characteristic length of the samples, but still relying in the Fourier equation. This approach has also been overtaken in the last years using more advanced techniques. Some examples are ultra-fast laser techniques measuring the effective thermal conductivity using heaters with different sizes or working at different excitation frequency ranges [1,2,3,4,5,6,7]. In these new setups an explicit generalization of the Fourier law should be used because the effective thermal conductivity approach does not provide good results. In consequence, other transport phenomena such as ballistic transport, superdiffusive regime or collective flow have appeared [8,9,10,11,12].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    At this point we stress the use of the word relevant, and not dominant. With this we indicate that momentum conservation should be included whenever N collisions have an effect and not only when they dominate the transport.

References

  1. J.A. Johnson, A.A. Maznev, J. Cuffe, J.K. Eliason, A.J. Minnich, T. Kehoe, C.M.S. Torres, G. Chen, K.A. Nelson, Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane. Phys. Rev. Lett. 110, 025901 (2013)

    Article  ADS  Google Scholar 

  2. M.E. Siemens, Q. Li, R. Yang, K.K.A. Nelson, E.H. Anderson, M.M. Murnane, H.C. Kapteyn, Quasi-Ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nat. Mater. 9, 26 (2010)

    Article  ADS  Google Scholar 

  3. A.J. Minnich, J.A. Johnson, A.J. Schmidt, K. Esfarjani, M.S. Dresselhaus, K.A. Nelson, G. Chen, Thermal conductivity spectroscopy technique to measure phonon mean free paths. Phys. Rev. Lett. 107, (2011)

    Google Scholar 

  4. K.T. Regner, D.P. Sellan, Z. Su, C.H. Amon, A.J.H. Mc Gaughey, J. Malen, Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nat. Commun. 4, 1640 (2013)

    Google Scholar 

  5. R.B. Wilson, D.G. Cahill, Anisotropic failure of Fourier theory in time-domain thermoreflectance experiments. Nat. Commun. 5, 5075 (2014)

    Google Scholar 

  6. Y. Hu, L. Zeng, A.J. Minnich, M.S. Dresselhaus, G. Chen, Spectral mapping of thermal conductivity through nanoscale ballistic transport. Nat. Nanotechnol. 10, 701 (2015)

    Article  ADS  Google Scholar 

  7. K.M. Hoogeboom-Pot, J.N. Hernandez-Charpak, X. Gu, T.D. Frazer, E.H. Anderson, W. Chao, R.W. Falcone, R. Yang, M.M. Murnane, H.C. Kapteyn, D. Nardi, A new regime of nanoscale thermal transport: collective diffusion increases dissipation efficiency. Proc. Natl. Acad. Sci. 112, 201503449 (2015)

    Article  ADS  Google Scholar 

  8. P. Torres, A. Torello, J. Bafaluy, J. Camacho, X. Cartoixà, F.X. Alvarez, First principles kinetic-collective thermal conductivity of semiconductors. Phys. Rev. B. 95, 165407 (2017)

    Google Scholar 

  9. B. Vermeersch, A.M.S. Mohammed, G. Pernot, Y.R. Koh, A. Shakouri, Thermal interfacial transport in the presence of ballistic heat modes. Phys. Rev. B. 90, 1 (2014)

    Google Scholar 

  10. B. Vermeersch, A. Shakouri, in Nonlocality in microscale heat conduction (2014), p. 1, arXiv:1412.6555

  11. A. Cepellotti, G. Fugallo, L. Paulatto, M. Lazzeri, F. Mauri, N. Marzari, Phonon hydrodynamics in two-dimensional materials. Nat. Commun. 6, 1 (2015)

    Google Scholar 

  12. S. Lee, D. Broido, K. Esfarjani, G. Chen, Hydrodynamic phonon transport in suspended graphene. Nat. Commun. 6, 6290 (2015)

    Google Scholar 

  13. R.A. Guyer, J.A. Krumhansl, Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766 (1966)

    Article  ADS  Google Scholar 

  14. D. Jou, G. Lebon, M. Criado-Sancho, Variational principles for thermal transport in nanosystems with heat slip flow. Phys. Rev. E. 82, 1 (2010)

    Google Scholar 

  15. F.X. Alvarez, D. Jou, A. Sellitto, Phonon hydrodynamics and phonon-boundary scattering in nanosystems. J. Appl. Phys. 105, (2009)

    Article  ADS  Google Scholar 

  16. L. Boltzmann, Weitere studien über das wärmegleichgewicht unter gasmolekülen, vol. 66 (Sitzungsberichte der Akademie der Wissenschaften, Wien, 1872)

    Google Scholar 

  17. J. Ziman, in Electrons and Phonons The Theory of Transport Phenomena in Solids (Oxford University Press, Oxford, 2001)

    Google Scholar 

  18. J. Callaway, Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046 (1959)

    Article  ADS  Google Scholar 

  19. L. Chaput, Direct solution to the linearized phonon boltzmann equation. Phys. Rev. Lett. 110, 1 (2013)

    Article  Google Scholar 

  20. A. Cepellotti, N. Marzari, Thermal transport in crystals as a kinetic theory of relaxons. Phys. Rev. X. 6, 041013 (2016)

    Google Scholar 

  21. P.B. Allen, Improved callaway model for lattice thermal conductivity. Phys. Rev. B. 88, 144302 (2013)

    Google Scholar 

  22. W. Li, N. Mingo, L. Lindsay, D.A. Broido, D.A. Stewart, N.A. Katcho, Thermal conductivity of diamond nanowires from first principles. Phys. Rev. B. 85, 195436 (2012)

    Google Scholar 

  23. L. Chaput, Supplementary material. Phys. Rev. Lett. 110, 1 (2013)

    Google Scholar 

  24. R.A. Guyer, J.A. Krumhansl, Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148, 778 (1966)

    Article  ADS  Google Scholar 

  25. C. De Tomas, A. Cantarero, A.F. Lopeandia, F.X. Alvarez, From kinetic to collective behavior in thermal transport on semiconductors and semiconductor nanostructures. J. Appl. Phys. 115, (2014)

    Article  ADS  Google Scholar 

  26. C. De Tomas, A. Cantarero, A.F. Lopeandia, F.X. Alvarez, Enhancing of optic phonon contribution in hydrodynamic phonon transport. J. Appl. Phys. 118, (2015)

    Google Scholar 

  27. B. Vermeersch, A.M.S. Mohammed, G. Pernot, Y.R. Koh, A. Shakouri, Superdiffusive heat conduction in semiconductor alloys II. Truncated Lévy formalism for experimental analysis. Phys. Rev. B. 91, 085203 (2015)

    Google Scholar 

  28. C. De Tomas, A. Cantarero, A.F. Lopeandia, F.X. Alvarez, Thermal conductivity of group-IV semiconductors from a kinetic-collective model. Proc. R. Soc. A. 470, 20140371 (2014)

    Article  ADS  Google Scholar 

  29. B. Vermeersch, J. Carrete, N. Mingo, A. Shakouri, Superdiffusive heat conduction in semiconductor alloys. I. Theoretical foundations. Phys. Rev. B. 91, 085202 (2015)

    Google Scholar 

  30. K.C. Collins, A.A. Maznev, Z. Tian, K. Esfarjani, K.A. Nelson, G. Chen, Non-diffusive relaxation of a transient thermal grating analyzed with the Boltzmann transport equation. J. Appl. Phys. 114, 104302 (2013)

    Article  ADS  Google Scholar 

  31. E.H. Sondheimer, Mean Free Path of Electrons in Metals. Adv. Phys. 1, (1952)

    Google Scholar 

  32. D. Jou, J. Casas, G. Lebon, in Extended Irreversible Thermodynamics, 4th edn. (Springer, Berlin, 2010)

    Google Scholar 

  33. F.X. Alvarez, D. Jou, Memory and nonlocal effects in heat transport: from diffusive to ballistic regimes. Appl. Phys. Lett. 90, 1 (2007)

    Article  ADS  Google Scholar 

  34. A. Sellitto, F.X. Alvarez, D. Jou, Second law of thermodynamics and phonon-boundary conditions in nanowires. J. Appl. Phys. 107, (2010)

    Article  ADS  Google Scholar 

  35. B. Vermeersch, A. Shakouri, in Spatiotemporal flux memory in nondiffusive transport (2014), p. 1, arXiv:1412.8517

  36. D.G. Cahill, R.O. Pohl, Thermal conductivity of amorphous solids above the plateau. Phys. Rev. B. 35, 4067 (1987)

    Article  ADS  Google Scholar 

  37. K.M. Lee, T.Y. Choi, S.K. Lee, D. Poulikakos, Focused ion beam-assisted manipulation of single and double beta-SiC nanowires and their thermal conductivity measurements by the four-point-probe 3-omega method. Nanotechnology 21, 125301 (2010)

    Article  ADS  Google Scholar 

  38. Y.K. Koh, D.G. Cahill, Frequency dependence of the thermal conductivity of semiconductor alloys. Phys. Rev. B. 76, 075207 (2007)

    Google Scholar 

  39. D.G. Cahill, Thermal conductivity measurement from 30 to 750 K: the 3\(\omega \) method. Rev. Sci. Instrum. 61, 802 (1990)

    Google Scholar 

  40. G. Nilsson, G. Nelin, Study of the homology between silicon and germanium by thermal-neutron spectrometry. Phys. Rev. B. 6, 3777 (1972)

    Article  ADS  Google Scholar 

  41. G. Winterling, W. Heinicke, Measurements of phonon lifetimes by two successive light pulses. Phys. Lett. A 27, 329 (1968)

    Article  ADS  Google Scholar 

  42. B.-L. Huang, M. Kaviany, Ab initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride. Phys. Rev. B. 77, 125209 (2008)

    Google Scholar 

  43. J. Sadhu, H. Tian, J. Ma, B. Azeredo, J. Kim, K. Balasundaram, C. Zhang, X. Li, P.M. Ferreira, S. Sinha, Quenched phonon drag in silicon nanowires reveals significant effect in the bulk at room temperature. Nano Lett. (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pol Torres Alvarez .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Torres Alvarez, P. (2018). Thermal Transport. In: Thermal Transport in Semiconductors. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-94983-3_2

Download citation

Publish with us

Policies and ethics