Skip to main content

Introduction

  • Chapter
  • First Online:
  • 611 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Most of the daily life devices and electronic tools have components based on semiconductor materials. These have been traditionally used for a wide range of applications, from transistors to photovoltaic or thermoelecric energy sources [1–4]. The industry associated to all these tools is in constant research to improve their devices. Such improvement can only be achieved from the proper knowledge of the physics involved in their operation. In recent years, the technology industry has evolved to the nanotechnology world in an attempt to reduce the size of the devices to dimensions as small as allowed by manufacturing. This change has awoken new research lines in the field of physics, chemistry or even in medicine [5–8], where nanoparticles can be used to detect or even remove cancerous cells. The problem that this reduction has faced is that the properties of materials at these new scales have turned out to be different from those at larger scales. For that reason a proper study at micro/nanoscale has become a key issue.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E. Garnett, M. Brongersma, Y. Cui, M. McGehee, Modelling the efficiency of a nanofluid direct absorption solar collector. Annu. Rev. Mater. Res. 41, 269 (2011)

    Article  ADS  Google Scholar 

  2. V. Cregan, T. Myers, Modelling the efficiency of a nanofluid direct absorption solar collector. Int. J. Heat Mass Transf. 90, 505 (2015)

    Article  Google Scholar 

  3. Z. Liu, J. Xu, D. Chen, G. She, Flexible electronics based on inorganic nanowires. Chem. Soc. Rev. 44, 161 (2015)

    Article  Google Scholar 

  4. M. Ge, J. Rong, X. Fang, C. Zhou, Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 12, 2318 (2012)

    Article  ADS  Google Scholar 

  5. A. Sørensen, K. Mølmer, Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971 (1999)

    Article  ADS  Google Scholar 

  6. A. Chinen, C. Guan, J. Ferrer, S. Barnaby, T. Merkel, C. Mirkin, Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev. 115, 10530 (2015)

    Article  Google Scholar 

  7. O. Salata, Applications of nanoparticles in biology and medicine. J. Nanobiotechnol. 2, 3 (2004)

    Google Scholar 

  8. F. Ahmad, A. Pandey, A. Herzog, J. Rose, C. Gerba, S. Hashsham, Environmental applications and potential health implications of quantum dots. J. Nanopart. Res. 14, 1038 (2012)

    Article  ADS  Google Scholar 

  9. M. Muñoz Rojo, B. Abad, C.V. Manzano, P. Torres, X. Cartoixà, F.X. Alvarez, M.S. Martín-González, Thermal conductivity of Bi\(_2\)Te\(_3\) nanowires: how size affects phonon scattering. Nanoscale 9, 6741 (2017)

    Article  Google Scholar 

  10. J. Sadhu, H. Tian, J. Ma, B. Azeredo, J. Kim, K. Balasundaram, C. Zhang, X. Li, P.M. Ferreira, S. Sinha, Quenched phonon drag in silicon nanowires reveals significant effect in the bulk at room temperature. Nano Lett. (2015)

    Google Scholar 

  11. B.-L. Huang, M. Kaviany, Ab initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride. Phys. Rev. B. 77, 125209 (2008)

    Google Scholar 

  12. A. Ziabari, P. Torres, B. Vermeersch, X. Cartoixà, A. Torello, Y. Xuan, J.-H. Bahk, Y. Koh, Y. P., F. Alvarez, A. Shakouri, Full-field thermal imaging of quasiballistic crosstalk reduction in nanoscale devices. Nat. Commun. 9, 255 (2018)

    Google Scholar 

  13. L. Boltzmann, in Weitere studien über das wärmegleichgewicht unter gasmolekülen, vol. 66 (Sitzungsberichte der Akademie der Wissenschaften, Wien, 1872)

    Google Scholar 

  14. R.A. Guyer, J.A. Krumhansl, Solution of the linearized phonon boltzmann equation. Phys. Rev. 148, 766 (1966)

    Article  ADS  Google Scholar 

  15. R.A. Guyer, J.A. Krumhansl, Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148, 778 (1966)

    Article  ADS  Google Scholar 

  16. F.X. Alvarez, D. Jou, A. Sellitto, Phonon hydrodynamics and phonon-boundary scattering in nanosystems. J. Appl. Phys. 105, (2009)

    Article  ADS  Google Scholar 

  17. D. Jou, G. Lebon, M. Criado-Sancho, Variational principles for thermal transport in nanosystems with heat slip flow. Phys. Rev. E. 82, 1 (2010)

    Google Scholar 

  18. C. Kittel, in Thermal Physics, 2nd edn. (W. H. Freeman, Unite States, 1980)

    Google Scholar 

  19. R.K. Pathria, P.D. Beale, in Statistical Mechanics, 3rd edn. (Elsevier, Unite States, 2011)

    Google Scholar 

  20. J. Fourier, The Analytical Theory of Heat (Dover Phoenix Editions, Unite States, 2003)

    MATH  Google Scholar 

  21. C. De Tomas, A. Cantarero, A.F. Lopeandia, F.X. Alvarez, Enhancing of optic phonon contribution in hydrodynamic phonon transport. J. Appl. Phys. 118, (2015)

    Google Scholar 

  22. G. Yangyu, W. Moran, Phonon hydrodynamics and its applications in nanoscale heat transport. Phys. Rep. 595, 1 (2015)

    Article  MathSciNet  Google Scholar 

  23. A. Cepellotti, G. Fugallo, L. Paulatto, M. Lazzeri, F. Mauri, N. Marzari, Phonon hydrodynamics in two-dimensional materials. Nat. Comm. 6, 1 (2015)

    Google Scholar 

  24. S. Lee, D. Broido, K. Esfarjani, G. Chen, Hydrodynamic phonon transport in suspended graphene, Nat. Commun. 6, 6290 (2015)

    Google Scholar 

  25. F.X. Alvarez, D. Jou, Size and frequency dependence of effective thermal conductivity in nanosystems, J. Appl. Phys. 103, (2008)

    Article  ADS  Google Scholar 

  26. M. Calvo, M. Hennessy, P. Torres, T. Myers, F.X. Alvarez, A slip based model for the size-dependent thermal conductivity in nanowires. Int. J. Heat Mass Transf. 91, (2018)

    Google Scholar 

  27. C. De Tomas, A. Cantarero, A.F. Lopeandia, F.X. Alvarez, From kinetic to collective behavior in thermal transport on semiconductors and semiconductor nanostructures. J. Appl. Phys. 115, (2014)

    Article  ADS  Google Scholar 

  28. P. Torres, A. Torello, J. Bafaluy, J. Camacho, X. Cartoixà, F.X. Alvarez, First principles kinetic-collective thermal conductivity of semiconductors. Phys. Rev. B. 95, 165407 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pol Torres Alvarez .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Torres Alvarez, P. (2018). Introduction. In: Thermal Transport in Semiconductors. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-94983-3_1

Download citation

Publish with us

Policies and ethics