Advertisement

Cluster Matching Distance for Rooted Phylogenetic Trees

  • Jucheol MoonEmail author
  • Oliver Eulenstein
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10847)

Abstract

Phylogenetic trees are fundamental to biology and are benefitting several other research areas. Various methods have been developed for inferring such trees, and comparing them is an important problem in computational phylogenetics. Addressing this problem requires tree measures, but all of them suffer from problems that can severely limit their applicability in practice. This also holds true for one of the oldest and most widely used tree measures, the Robinson-Foulds distance. While this measure is satisfying the properties of a metric and is efficiently computable, it has a negatively skewed distribution, a poor range of discrimination and diameter, and may not be robust when comparing erroneous trees. The cluster distance is a measure for comparing rooted trees that can be interpreted as a weighted version of the Robinson-Foulds distance. We show that when compared with the Robinson-Foulds distance, the cluster distance is much more robust towards small errors in the compared trees, and has a significantly improved distribution and range.

Keywords

Evolutionary trees Bipartite perfect matching Robinson-Foulds distance Cluster matching distance 

Notes

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. 1617626.

References

  1. 1.
    Allen, B.L., Steel, M.: Subtree transfer operations and their induced metrics on evolutionary trees. Ann. Comb. 5(1), 1–15 (2001)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arvestad, L., et al.: Gene tree reconstruction and orthology analysis based on an integrated model for duplications and sequence evolution. In: RECOMB, pp. 326–335. ACM (2004)Google Scholar
  3. 3.
    Betkier, A., Szczęsny, P., Górecki, P.: Fast algorithms for inferring gene-species associations. In: Harrison, R., Li, Y., Măndoiu, I. (eds.) ISBRA 2015. LNCS, vol. 9096, pp. 36–47. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19048-8_4CrossRefGoogle Scholar
  4. 4.
    Bogdanowicz, D., Giaro, K.: On a matching distance between rooted phylogenetic trees. Int. J. Appl. Math. Comput. Sci. 23(3), 669–684 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bordewich, M., Semple, C.: On the computational complexity of the rooted subtree prune and regraft distance. Ann. Comb. 8(4), 409–423 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bourque, M.: Arbres de Steiner et réseaux dont varie l’emplagement de certains sommets. Ph.D. thesis, University of Montréal Montréal, Canada (1978)Google Scholar
  7. 7.
    Bryant, D.: Hunting for trees, building trees and comparing trees: theory and method in phylogenetic analysis. Ph.D. thesis, University of Canterbury, New Zealand (1997)Google Scholar
  8. 8.
    Bryant, D., Steel, M.: Computing the distribution of a tree metric. IEEE/ACM Trans. Comput. Biol. Bioinf. 6(3), 420–426 (2009)CrossRefGoogle Scholar
  9. 9.
    Das Gupta, B., et al.: On distances between phylogenetic trees. In: SODA 1997, pp. 427–436 (1997)Google Scholar
  10. 10.
    Day, W.H.E.: Optimal algorithms for comparing trees with labeled leaves. J. Classif. 2(1), 7–28 (1985)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Felenstein, J.: Inferring Phylogenies. Sinauer, Sunderland (2003)Google Scholar
  12. 12.
    Forster, P., Renfrew, C.: Phylogenetic Methods and the Prehistory of Languages. McDonald Institute of Archeological, Cambridge (2006)Google Scholar
  13. 13.
    Harding, E.F.: The probabilities of rooted tree-shapes generated by random bifurcation. Adv. Appl. Probab. 3(1), 44–77 (1971)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Harris, S.R., et al.: Whole-genome sequencing for analysis of an outbreak of meticillin-resistant staphylococcus aureus: a descriptive study. Lancet. Infect. Dis. 13(2), 130–136 (2013)CrossRefGoogle Scholar
  15. 15.
    Hein, J., et al.: On the complexity of comparing evolutionary trees. Discret. Appl. Math. 71(1–3), 153–169 (1996)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hickey, G., et al.: SPR distance computation for unrooted trees. Evol. Bioinform. Online 4, 17–27 (2008)CrossRefGoogle Scholar
  17. 17.
    Huber, K.T., Spillner, A., Suchecki, R., Moulton, V.: Metrics on multilabeled trees: interrelationships and diameter bounds. IEEE/ACM Trans. Comput. Biol. Bioinf. 8(4), 1029–1040 (2011)CrossRefGoogle Scholar
  18. 18.
    Hufbauer, R.A., et al.: Population structure, ploidy levels and allelopathy of Centaurea maculosa (spotted knapweed) and C. diffusa (diffuse knapweed) in North America and Eurasia. In: ISBCW, pp. 121–126. USDA Forest Service (2003)Google Scholar
  19. 19.
    Katherine, S.J.: Review paper: the shape of phylogenetic treespace. Syst. Biol. 66(1), e83–e94 (2017)Google Scholar
  20. 20.
    Kuhner, M.K., Yamato, J.: Practical performance of tree comparison metrics. Syst. Biol. 64(2), 205–214 (2015)CrossRefGoogle Scholar
  21. 21.
    Li, M., Tromp, J., Zhang, L.: On the nearest neighbour interchange distance between evolutionary trees. J. Theor. Biol. 182(4), 463–467 (1996)CrossRefGoogle Scholar
  22. 22.
    Li, M., Zhang, L.: Twist-rotation transformations of binary trees and arithmetic expressions. J. Algorithms 32(2), 155–166 (1999)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lin, Y., Rajan, V., Moret, B.M.E.: A metric for phylogenetic trees based on matching. IEEE/ACM Trans. Comput. Biol. Bioinf. 9(4), 1014–1022 (2012)CrossRefGoogle Scholar
  24. 24.
    Ma, B., Li, M., Zhang, L.: From gene trees to species trees. SIAM J. Comput. 30(3), 729–752 (2000)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Makarenkov, V., Leclerc, B.: Comparison of additive trees using circular orders. J. Comput. Biol. 7(5), 731–744 (2000)CrossRefGoogle Scholar
  26. 26.
    Nik-Zainal, S., et al.: The life history of 21 breast cancers. Cell 149(5), 994–1007 (2012)CrossRefGoogle Scholar
  27. 27.
    Robinson, D.F., Foulds, L.R.: Comparison of weighted labelled trees. In: Horadam, A.F., Wallis, W.D. (eds.) Combinatorial Mathematics VI. LNM, vol. 748, pp. 119–126. Springer, Heidelberg (1979).  https://doi.org/10.1007/BFb0102690CrossRefGoogle Scholar
  28. 28.
    Robinson, D.F.: Comparison of labeled trees with valency three. J. Comb. Theory Ser. B 11(2), 105–119 (1971)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Math. Biosci. 53(1–2), 131–147 (1981)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Semple, C., Steel, M.A.: Phylogenetics. Oxford (2003)Google Scholar
  31. 31.
    Steel, M.A., Penny, D.: Distributions of tree comparison metrics. Syst. Biol. 42(2), 126–141 (1993)Google Scholar
  32. 32.
    Sukumaran, J., Holder, M.T.: DendroPy: a python library for phylogenetic computing. Bioinformatics 26(12), 1569–1571 (2010)CrossRefGoogle Scholar
  33. 33.
    Than, C.V., Rosenberg, N.A.: Mathematical properties of the deep coalescence cost. IEEE/ACM Trans. Comput. Biol. Bioinf. 10(1), 61–72 (2013)CrossRefGoogle Scholar
  34. 34.
    Wilkinson, M., et al.: The shape of supertrees to come: tree shape related properties of fourteen supertree methods. Syst. Biol. 54(3), 419–431 (2005)CrossRefGoogle Scholar
  35. 35.
    Wu, Y.-C., et al.: TreeFix: statistically informed gene tree error correction using species trees. Syst. Biol. 62(1), 110–120 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and Computer EngineeringCalifornia State University Long BeachLong BeachUSA
  2. 2.Department of Computer ScienceIowa State UniversityAmesUSA

Personalised recommendations