LSTM Recurrent Neural Networks for Influenza Trends Prediction

  • Liyuan Liu
  • Meng HanEmail author
  • Yiyun Zhou
  • Yan Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10847)


Influenza-like illness (ILI) is an acute respiratory infection causes substantial mortality and morbidity. Predict Influenza trends and response to a health disease rapidly is crucial to diminish the loss of life. In this paper, we employ the long short term memory (LSTM) recurrent neural networks to forecast the influenza trends. We are the first one to use multiple and novel data sources including virologic surveillance, influenza geographic spread, Google trends, climate and air pollution to predict influenza trends. Moreover, We find there are several environmental and climatic factors have the significant correlation with ILI rate.


Influenza-like illness Influenza trends Google trends Climate change Air pollution Long short term memory 


  1. 1.
    Lofgren, E., Fefferman, N.H., Naumov, Y.N., Gorski, J., Naumova, E.N.: Influenza seasonality: underlying causes and modeling theories. J. Virol. 81(11), 5429–5436 (2007)CrossRefGoogle Scholar
  2. 2.
    Mcneil, D.G.: This Flu Season Is the Worst in Nearly a Decade (2018). Accessed 13 Mar 2018
  3. 3.
    Centers for Disease Control and Prevention: Situation Update: Summary of Weekly FluView Report (2018). Accessed 5 Apr 2018
  4. 4.
    Han, M., Yan, M., Li, J., Ji, S., Li, Y.: Generating uncertain networks based on historical network snapshots. In: Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 747–758. Springer, Heidelberg (2013). Scholar
  5. 5.
    O’Connor, F.: Google Flu Trends calls out sick, indefinitely (2015). Accessed 13 Mar 2018
  6. 6.
    Dugas, A.F., Hsieh, Y.H., Levin, S.R., Pines, J.M., Mareiniss, D.P., Mohareb, A., Gaydos, C.A., Perl, T.M., Rothman, R.E.: Google flu trends: correlation with emergency department influenza rates and crowding metrics. Clin. Infect. Dis. 54(4), 463–469 (2012)CrossRefGoogle Scholar
  7. 7.
    Santillana, M., Nguyen, A.T., Dredze, M., Paul, M.J., Nsoesie, E.O., Brownstein, J.S.: Combining search, social media, and traditional data sources to improve influenza surveillance. PLoS Comput. Biol. 11(10), e1004513 (2015)CrossRefGoogle Scholar
  8. 8.
    Han, M., Yan, M., Cai, Z., Li, Y.: An exploration of broader influence maximization in timeliness networks with opportunistic selection. J. Netw. Comput. Appl. 63, 39–49 (2016)CrossRefGoogle Scholar
  9. 9.
    Albinali, H., Han, M., Wang, J., Gao, H., Li, Y.: The roles of social network mavens. In: 2016 12th International Conference on Mobile Ad-Hoc and Sensor Networks, MSN, pp. 1–8. IEEE (2016)Google Scholar
  10. 10.
    Guo, X., Liu, B., Chen, L., Chen, G., Pan, Y., Zhang, J.: Bayesian inference for functional dynamics exploring in fMRI data. Comput. Math. Methods Med. 2016, 1–9 (2016)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Dietterich, T.G.: Machine learning for sequential data: a review. In: Caelli, T., Amin, A., Duin, R.P.W., de Ridder, D., Kamel, M. (eds.) SSPR /SPR 2002. LNCS, vol. 2396, pp. 15–30. Springer, Heidelberg (2002). Scholar
  12. 12.
    Georgia Health News: Georgia’s flu death toll now at 51; season’s peak is still ahead (online)Google Scholar
  13. 13.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  14. 14.
    Azzouni, A., Pujolle, G.: A long short-term memory recurrent neural network framework for network traffic matrix prediction. arXiv preprint arXiv:1705.05690 (2017)
  15. 15.
    Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM (1999)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Kennesaw State UniversityKennesawUSA

Personalised recommendations