Advertisement

GPU Accelerated Ray Tracing for the Beta-Barrel Detection from Three-Dimensional Cryo-EM Maps

  • Albert Ng
  • Adedayo Odesile
  • Dong SiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10847)

Abstract

Cryo-electron microscopy is a technique that is capable of producing high quality three-dimensional density maps of proteins. The identification of secondary structures from within these proteins is important to help understand the protein’s overall structure and function. One of the more commonly found secondary structures is the \(\beta \) barrel. In previous papers, we presented a novel approach utilizing a genetic algorithm and ray tracing to identify and isolate \(\beta \) barrels from the density maps. However, one key limitation of that approach was the computational cost of ray tracing portion. In this paper, we applied parallel processing and graphical processing units (GPU) to increase the performance of the ray tracing. We tested this method on both experimental and simulated cryo-EM density maps. The results suggest that we were successful in speeding up our method significantly using parallelization and graphical processing units.

Notes

Acknowledgments

This work was supported by the Graduate Research Award from the Computing and Software Systems division of University of Washington Bothell and the startup fund 74-0525. We would like to thank Dr. Kelvin Sung for his assistance on this paper.

References

  1. 1.
    Adrian, M., Dubochet, J., Lepault, J., McDowall, A.W.: Cryo-electron microscopy of viruses. Nature 308(5954), 32–36 (1984). https://www.nature.com/articles/308032a0CrossRefGoogle Scholar
  2. 2.
    Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabilities. In: Proceedings of the April 18–20, Spring Joint Computer Conference, pp. 483–485. ACM (1967).  https://doi.org/10.1145/1465482.1465560
  3. 3.
    Baker, M., Baker, M., Hryc, C., Ju, T., Chiu, W.: Gorgon and pathwalking: macromolecular modeling tools for subnanometer resolution density maps. Biopolymers 97, 655–668 (2012)CrossRefGoogle Scholar
  4. 4.
    Baker, M.L., Ju, T., Chiu, W.: Identification of secondary structure elements in intermediate-resolution density maps. Structure 15(1), 7–19 (2007). http://www.sciencedirect.com/science/article/pii/S0969212606004722CrossRefGoogle Scholar
  5. 5.
    Dal Palù, A., He, J., Pontelli, E., Lu, Y.: Identification of -Helices From Low Resolution Protein Density Maps, pp. 89–98Google Scholar
  6. 6.
    Glassner, A.S.: Space subdivision for fast ray tracing. IEEE Comput. Graph. Appl. 4(10), 15–24 (1984)CrossRefGoogle Scholar
  7. 7.
    Goldstein, R.A., Nagel, R.: 3-D visual simulation. Trans. Soc. Comput. Simul. 16(1), 25–31 (1971).  https://doi.org/10.1177/003754977101600104CrossRefGoogle Scholar
  8. 8.
    Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–72 (1992).  https://doi.org/10.1038/scientificamerican0792-66CrossRefGoogle Scholar
  9. 9.
    Lawson, C.L., Baker, M.L., Best, C., Bi, C., Dougherty, M., Feng, P., van Ginkel, G., Devkota, B., Lagerstedt, I., Ludtke, S.J., Newman, R.H., Oldfield, T.J., Rees, I., Sahni, G., Sala, R., Velankar, S., Warren, J., Westbrook, J.D., Henrick, K., Kleywegt, G.J., Berman, H.M., Chiu, W.: EMDataBank.org: unified data resource for CryoEM. Nucleic Acids Res. 39, D456–D464 (2011). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3013769/CrossRefGoogle Scholar
  10. 10.
    Li, R., Si, D., Zeng, T., Ji, S., He, J.: Deep convolutional neural networks for detecting secondary structures in protein density maps from cryo-electron microscopy. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 41–46 (2016)Google Scholar
  11. 11.
    Ng, A., Si, D.: Beta-barrel detection for medium resolution cryo-electron microscopy density maps using genetic algorithms and ray tracingGoogle Scholar
  12. 12.
    Ng, A., Si, D.: Genetic algorithm based beta-barrel detection for medium resolution cryo-EM density maps. In: Cai, Z., Daescu, O., Li, M. (eds.) ISBRA 2017. LNCS, vol. 10330, pp. 174–185. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59575-7_16CrossRefGoogle Scholar
  13. 13.
    Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E.: UCSF chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004). http://onlinelibrary.wiley.com/doi/10.1002/jcc.20084/fullCrossRefGoogle Scholar
  14. 14.
    Reinhard, E., Jansen, F.W.: Rendering large scenes using parallel ray tracing. Parallel Comput. 23(7), 873–885 (1997). http://www.sciencedirect.com/science/article/pii/S0167819197000318CrossRefGoogle Scholar
  15. 15.
    Rusu, M., Wriggers, W.: Evolutionary bidirectional expansion for the tracing of alpha helices in cryo-electron microscopy reconstructions. J. Struct. Biol. 177(2), 410–419 (2012). http://www.sciencedirect.com/science/article/pii/S1047847711003455CrossRefGoogle Scholar
  16. 16.
    Si, D., He, J.: Combining image processing and modeling to generate traces of beta-strands from cryo-EM density images of beta-barrels. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3941–3944 (2014)Google Scholar
  17. 17.
    Si, D.: Automatic detection of beta-barrel from medium resolution cryo-EM density maps. In: Proceedings of the 7th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, pp. 156–164. ACM (2016).  https://doi.org/10.1145/2975167.2975183
  18. 18.
    Si, D., He, J.: Beta-sheet detection and representation from medium resolution cryo-EM density maps. In: Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics, pp. 764:764–764:770. ACM (2013).  https://doi.org/10.1145/2506583.2506707
  19. 19.
    Si, D., He, J.: Modeling beta-traces for beta-barrels from cryo-EM density maps. 2017, 1–9 (2017).  https://doi.org/10.1155/2017/1793213. https://www.hindawi.com/journals/bmri/2017/1793213/
  20. 20.
    Si, D., Ji, S., Nasr, K.A., He, J.: A machine learning approach for the identification of protein secondary structure elements from electron cryo-microscopy density maps. Biopolymers 97(9), 698–708 (2012). http://onlinelibrary.wiley.com/doi/10.1002/bip.22063/abstractCrossRefGoogle Scholar
  21. 21.
    Zhou, Z.H.: Atomic resolution cryo electron microscopy of macromolecular complexes. In: Ludtke, S.J., Venkataram Prasad, B.V. (eds.) Advances in Protein Chemistry and Structural Biology, vol. 82, pp. 1–35. Academic Press, Cambridge (2011).  https://doi.org/10.1016/B978-0-12-386507-6.00001-4. http://www.sciencedirect.com/science/article/pii/B9780123865076000014Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computing and Software SystemsUniversity of Washington BothellBothellUSA

Personalised recommendations