Skip to main content

Hierarchical Similarity Network Fusion for Discovering Cancer Subtypes

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10847))

Included in the following conference series:

Abstract

Recent breakthroughs in biologic sequencing technologies have cost-effectively yielded diverse types of observations. Integrative analysis of multiple platform cancer data, which is capable of revealing intrinsic characteristics of a biological process, has become an attractive research route on cancer subtypes discovery. Most machine learning based methods need represent each input data in unified space, losing certain important features or resulting in various noises in some data types. Furthermore, many network based data integration methods treat each type data independently, leading to a lot of inconsistent conclusions. Subsequently, similarity network fusion (SNF) was developed to deal with such questions. However, Euclidean distance metrics employed in SNF suffers curse of dimensionality and thus gives rise to poor results.

To this end, we propose a new integrated method, dubbed hierarchical similarity network (HSNF), to learn a fused discriminating patient similarity network. HSNF randomly samples sub-features from different input data to construct multiple input similarity matrixes used as a basic of fusion so that diverse similarity matrixes are generated by multiple random sampling. Then we design a hierarchical fusion framework to make full use of the complementariness of diverse similarity networks from different feature modalities. Finally, based on the final fused similarity matrix, spectral clustering was used to discover cancer subtypes. Experimental results on five public cancer datasets manifest that HSNF can discover significantly different subtypes and can consistently outperform the-state-of-the-art in terms of silhouette, and p-value of survival analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999)

    Article  Google Scholar 

  2. Maulik, U., Mukhopadhyay, A., Chakraborty, D.: Gene-expression-based cancer subtypes prediction through feature selection and transductive SVM. IEEE Trans. Biomed. Eng. 60(4), 1111–1117 (2013)

    Article  Google Scholar 

  3. Kim, D., Lee, G., Sohn, K.-A., Bang, L., Kim, S.Y.: Identifying subtype-specific associations between gene expression and DNA methylation profiles in breast cancer. BMC Med. Genom. 10(1), 28 (2017)

    Google Scholar 

  4. Cancer Genome Atlas Research Network: Integrated genomic analyses of ovarian carcinoma. Nature 474(7353), 609–615 (2011)

    Article  Google Scholar 

  5. Verhaak, R.G., Hoadley, K.A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M.D., Miller, C.R., Ding, L., Golub, T., Mesirov, J.P.: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1), 98–110 (2010)

    Article  Google Scholar 

  6. Wang, H., Zheng, H., Wang, J., Wang, C., Wu, F.-X.: Integrating omics data with a multiplex network-based approach for the identification of cancer subtypes. IEEE Trans. Nanobiosci. 15(4), 335–342 (2016)

    Article  Google Scholar 

  7. Parker, J.S., Mullins, M., Cheang, M.C., Leung, S., Voduc, D., Vickery, T., Davies, S., Fauron, C., He, X., Hu, Z.: Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 27(8), 1160–1167 (2009)

    Article  Google Scholar 

  8. Liang, M., Li, Z., Chen, T., Zeng, J.: Integrative data analysis of multi-platform cancer data with a multimodal deep learning approach. IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB) 12(4), 928–937 (2015)

    Article  Google Scholar 

  9. Dai, X., Li, T., Bai, Z., Yang, Y., Liu, X., Zhan, J., Shi, B.: Breast cancer intrinsic subtype classification, clinical use and future trends. Am. J. Cancer Res. 5(10), 2929 (2015)

    Google Scholar 

  10. List, M., Hauschild, A.-C., Tan, Q., Kruse, T.A., Baumbach, J., Batra, R.: Classification of breast cancer subtypes by combining gene expression and DNA methylation data. J. Integr. Bioinf. (JIB) 11(2), 1–14 (2014)

    Article  Google Scholar 

  11. Kim, S., Oesterreich, S., Kim, S., Park, Y., Tseng, G.C.: Integrative clustering of multi-level omics data for disease subtype discovery using sequential double regularization. Biostatistics 18(1), 165–179 (2017)

    Article  MathSciNet  Google Scholar 

  12. Wang, B., Mezlini, A.M., Demir, F., Fiume, M., Tu, Z., Brudno, M., Haibe-Kains, B., Goldenberg, A.: Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11(3), 333–337 (2014)

    Article  Google Scholar 

  13. Cancer Genome Atlas Network: Comprehensive molecular portraits of human breast tumours. Nature 490(7418), 61–70 (2012)

    Article  Google Scholar 

  14. Wang, B., Jiang, J., Wang, W., Zhou, Z.-H., Tu, Z.: Unsupervised metric fusion by cross diffusion. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2997–3004. IEEE (2012)

    Google Scholar 

  15. Tao, H., Hou, C., Zhu, J., Yi, D.: Multi-view clustering with adaptively learned graph. In: Asian Conference on Machine Learning, pp. 113–128 (2017)

    Google Scholar 

  16. Shen, R., Olshen, A.B., Ladanyi, M.: Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25(22), 2906–2912 (2009)

    Article  Google Scholar 

  17. Xu, T., Le, T.D., Liu, L., Wang, R., Sun, B., Li, J.: Identifying cancer subtypes from miRNA-TF-mRNA regulatory networks and expression data. PLoS One 11(4), e0152792 (2016)

    Article  Google Scholar 

  18. Speicher, N.K., Pfeifer, N.: Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery. Bioinformatics 31(12), i268–i275 (2015)

    Article  Google Scholar 

  19. Le Van, T., van Leeuwen, M., Carolina Fierro, A., De Maeyer, D., Van den Eynden, J., Verbeke, L., De Raedt, L., Marchal, K., Nijssen, S.: Simultaneous discovery of cancer subtypes and subtype features by molecular data integration. Bioinformatics 32(17), i445–i454 (2016)

    Article  Google Scholar 

  20. Zhang, Z., Zhai, Z., Li, L.: Uniform projection for multi-view learning. IEEE Trans. Pattern anal. Mach. Intell. (2016)

    Google Scholar 

  21. Law, M.T., Urtasun, R., Zemel, R.S.: Deep spectral clustering learning. In: International Conference on Machine Learning, pp. 1985–1994 (2017)

    Google Scholar 

  22. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Data Mining, Inference, and Prediction. Springer, New York (2001)

    MATH  Google Scholar 

  23. Liaw, A., Wiener, M.: Classification and regression by randomForest. R News 2(3), 18–22 (2002)

    Google Scholar 

  24. Kaufman, L., Rousseeuw, P.J.: Finding groups in Data: An Introduction to Cluster Analysis. Wiley, Hoboken (2009)

    MATH  Google Scholar 

  25. Xu, T., Le, T.D., Liu, L., Su, N., Wang, R., Sun, B., Colaprico, A., Bontempi, G., Li, J.: CancerSubtypes: an R/bioconductor package for molecular cancer subtype identification, validation, and visualization. Bioinformatics 33, 3131–3133 (2017)

    Article  Google Scholar 

  26. Zhang, Y., Xiang, M., Yang, B.: Low-rank preserving embedding. Pattern Recogn. 70, 112–125 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers. This work has been supported by the National Natural Science Foundation of China (Grant No. 61332014 and 61772426).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuequn Shang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, S., Shang, X. (2018). Hierarchical Similarity Network Fusion for Discovering Cancer Subtypes. In: Zhang, F., Cai, Z., Skums, P., Zhang, S. (eds) Bioinformatics Research and Applications. ISBRA 2018. Lecture Notes in Computer Science(), vol 10847. Springer, Cham. https://doi.org/10.1007/978-3-319-94968-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94968-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94967-3

  • Online ISBN: 978-3-319-94968-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics