Skip to main content

Photocurrent Spectroscopy

  • Chapter
  • First Online:
Spectroscopy of Semiconductors

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 215))

Abstract

Applying an external electric bias on a semiconductor can produce an electric current. Impinging a light on a semiconductor already having an external electric bias can generate an extra electric current called photocurrent whose amplitude depends on the optical power and the wavelength of the light. In this chapter we study the photocurrent spectra of quantum well infrared photodetector and solar cells using quantum dots. We also study the photocurrent induced by multiphoton excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.F. Levine, Quantum-well infrared photodetectors. J. Appl. Phys. 74, R1(81) (1993)

    Article  ADS  Google Scholar 

  2. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Halsted Press, 1988), p. 4

    Google Scholar 

  3. S.C. Shen, Comparison and competition between MCT and QW structure material for use in IR detector. Microelectron. J. 25, 713–739 (1994)

    Article  Google Scholar 

  4. W. Lu, Y. Fu, Quantum well infrared detectors, in Encyclopedia of Nanoscience and Nanotechnology, vol. 9, ed. by H.S. Nalwa (American Scientific Publishers), p. 179

    Google Scholar 

  5. Y. Jing, Z. Li, Q. Li1, X. Chen, P. Chen, H. Wang, M. Li, N. Li, W. Lu, Pixel-level plasmonic microcavity infrared photodetector. Scientific Reports 6, 25849 (2016). https://doi.org/10.1038/srep25849

  6. X.-J. Shang, J.-F. He, M.-F. Li, F. Zhan, H.-Q. Ni, Z.-C. Niu, H. Pettersson, Y. Fu, Quantum-dot-induced optical transition enhancement in InAs quantum-dot-embedded \(p-i-n\) GaAs solar cells. Appl. Phys. Lett. 99, 113514 (2011)

    Article  ADS  Google Scholar 

  7. Z. Ning, H. Tian, H. Qin, Q. Zhang, H. Ågren, L. Sun, Y. Fu, Wave function engineering of CdSe-CdS core-shell quantum dots for enhanced electron transfer to a TiO\(_2\) substrate. J. Phys. Chem. C 114, 15184–9 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Lu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, W., Fu, Y. (2018). Photocurrent Spectroscopy. In: Spectroscopy of Semiconductors. Springer Series in Optical Sciences, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-319-94953-6_6

Download citation

Publish with us

Policies and ethics