Skip to main content

Isogeometric Analysis: Mathematical and Implementational Aspects, with Applications

  • Chapter
  • First Online:
Splines and PDEs: From Approximation Theory to Numerical Linear Algebra

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2219))

Abstract

Isogeometric analysis (IGA) is a recent and successful extension of classical finite element analysis. IGA adopts smooth splines, NURBS and generalizations to approximate problem unknowns, in order to simplify the interaction with computer aided geometric design (CAGD). The same functions are used to parametrize the geometry of interest. Important features emerge from the use of smooth approximations of the unknown fields. When a careful implementation is adopted, which exploit its full potential, IGA is a powerful and efficient high-order discretization method for the numerical solution of PDEs. We present an overview of the mathematical properties of IGA, discuss computationally efficient isogeometric algorithms, and present some significant applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    IGA of Cahn-Hilliard 4th-order model of phase separation is studied in [62, 63]; Kirchhoff-Love 4th-order model of plates and shells in [21, 26, 78, 79]; IGA of crack propagation is studied in [126], with 4th- and 6th-order gradient-enhanced theories of damage [127]; 4th-order phase-field fracture models are considered in [30] and [29], where higher-order convergence rates to sharp-interface limit solutions are numerically demonstrated.

  2. 2.

    The effect of regularity on the spectral behavior of isogeometric discretizations has been studied in [49, 71, 73].

  3. 3.

    It is possible to further reduce the memory requirements at the cost of increasing the number of computations. Indeed, note that it is not necessary to store the whole \(\mathscr {D} \), \( {\widetilde {v}} \) and \(\widetilde {\widetilde {v}} \) since w in Algorithm 4 can be computed component by component with on-the-fly calculation of the portion of \(\mathscr {D} \), \( {\widetilde {v}} \) and \(\widetilde {\widetilde {v}} \) that is needed).

References

  1. C. Adam, T.J.R. Hughes, S. Bouabdallah, M. Zarroug, H. Maitournam, Selective and reduced numerical integrations for NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 284, 732–761 (2015)

    MATH  MathSciNet  Google Scholar 

  2. M. Ainsworth, O. Davydov, L.L. Schumaker, Bernstein-Bézier finite elements on tetrahedral-hexahedral-pyramidal partitions. Comput. Methods Appl. Mech. Eng. 304, 140–170 (2016)

    MATH  Google Scholar 

  3. P. Antolin, A. Buffa, F. Calabrò, M. Martinelli, G. Sangalli, Efficient matrix computation for tensor-product isogeometric analysis: the use of sum factorization. Comput. Methods Appl. Mech. Eng. 285, 817–828 (2015)

    MATH  MathSciNet  Google Scholar 

  4. D.N. Arnold, R.S. Falk, R. Winther, Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)

    MATH  MathSciNet  Google Scholar 

  5. D.N. Arnold, R.S. Falk, R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Am. Math. Soc. 47, 281–354 (2010)

    MATH  MathSciNet  Google Scholar 

  6. F. Auricchio, L. Beirão da Veiga, A. Buffa, C. Lovadina, A. Reali, G. Sangalli, A fully “locking-free” isogeometric approach for plane linear elasticity problems: a stream function formulation. Comput. Methods Appl. Mech. Eng. 197, 160–172 (2007)

    MATH  MathSciNet  Google Scholar 

  7. F. Auricchio, L. Beirão da Veiga, T.J.R. Hughes, A. Reali, G. Sangalli, Isogeometric collocation methods. Math. Models Methods Appl. Sci. 20, 2075–2107 (2010)

    MATH  MathSciNet  Google Scholar 

  8. F. Auricchio, L. Beirão da Veiga, T.J.R. Hughes, A. Reali, G. Sangalli, Isogeometric collocation for elastostatics and explicit dynamics. Comput. Methods Appl. Mech. Eng. 249–252, 2–14 (2012)

    MATH  MathSciNet  Google Scholar 

  9. F. Auricchio, F. Calabrò, T.J.R. Hughes, A. Reali, G. Sangalli, A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 249, 15–27 (2012)

    MATH  MathSciNet  Google Scholar 

  10. I. Babuska, W. Gui, The h, p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions. Numer. Math. 49, 613–658 (1986)

    Google Scholar 

  11. R.H. Bartels, G.W. Stewart, Solution of the matrix equation AX + XB = C. Commun. ACM 15, 820–826 (1972)

    MATH  Google Scholar 

  12. A. Bartezzaghi, L. Dedè, A. Quarteroni, Isogeometric analysis of high order partial differential equations on surfaces. Comput. Methods Appl. Mech. Eng. 295, 446–469 (2015)

    MATH  MathSciNet  Google Scholar 

  13. M. Bartoň, V.M. Calo, Gaussian quadrature for splines via homotopy continuation: rules for C 2 cubic splines. J. Comput. Appl. Math. 296, 709–723 (2016)

    MATH  MathSciNet  Google Scholar 

  14. M. Bartoň, V.M. Calo, Optimal quadrature rules for odd-degree spline spaces and their application to tensor-product-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 305, 217–240 (2016)

    MATH  MathSciNet  Google Scholar 

  15. Y. Bazilevs, L. Beirão da Veiga, J.A. Cottrell, T.J.R. Hughes, G. Sangalli, Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci. 16, 1031–1090 (2006)

    MATH  MathSciNet  Google Scholar 

  16. Y. Bazilevs, V. Calo, J.A. Cottrell, J.A. Evans, T.J.R. Hughes, S. Lipton, M.A. Scott, T.W. Sederberg, Isogeometric analysis using T-splines. Comput. Methods Appl. Mech. Eng. 199, 229–263 (2010)

    MATH  MathSciNet  Google Scholar 

  17. Y. Bazilevs, M.C. Hsu, M.A. Scott, Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput. Methods Appl. Mech. Eng. 249, 28–41 (2012)

    MATH  MathSciNet  Google Scholar 

  18. E. Beeker, Smoothing of shapes designed with free-form surfaces. Comput. Aided Des. 18, 224–232 (1986)

    Google Scholar 

  19. L. Beirão da Veiga, A. Buffa, J. Rivas, G. Sangalli, Some estimates for h-p-k-refinement in isogeometric analysis. Numer. Math. 118, 271–305 (2011)

    MATH  MathSciNet  Google Scholar 

  20. L. Beirão da Veiga, A. Buffa, D. Cho, G. Sangalli, Analysis-suitable t-splines are dual-compatible. Comput. Methods Appl. Mech. Eng. 249–252, 42–51 (2012)

    MATH  MathSciNet  Google Scholar 

  21. L. Beirão da Veiga, A. Buffa, C. Lovadina, M. Martinelli, G. Sangalli, An isogeometric method for the Reissner-Mindlin plate bending problem. Comput. Methods Appl. Mech. Eng. 209–212, 45–53 (2012)

    MATH  MathSciNet  Google Scholar 

  22. L. Beirão da Veiga, D. Cho, G. Sangalli, Anisotropic NURBS approximation in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 209–212, 1–11 (2012)

    MATH  MathSciNet  Google Scholar 

  23. L. Beirão da Veiga, A. Buffa, G. Sangalli, R. Vázquez, Analysis-suitable T-splines of arbitrary degree: definition, linear independence and approximation properties. Math. Models Methods Appl. Sci. 23, 1979–2003 (2013)

    MATH  MathSciNet  Google Scholar 

  24. L. Beirão da Veiga, D. Cho, L.F. Pavarino, S. Scacchi, BDDC preconditioners for isogeometric analysis. Math. Models Methods Appl. Sci. 23, 1099–1142 (2013)

    MATH  MathSciNet  Google Scholar 

  25. L. Beirão da Veiga, A. Buffa, G. Sangalli, R. Vázquez, Mathematical analysis of variational isogeometric methods. Acta Numer. 23, 157–287 (2014)

    MATH  MathSciNet  Google Scholar 

  26. Benson, D.J., Y. Bazilevs, M.C. Hsu, T.J.R. Hughes, A large deformation, rotation-free, isogeometric shell. Comput. Methods Appl. Mech. Eng. 200, 1367–1378 (2011)

    MATH  MathSciNet  Google Scholar 

  27. M. Bercovier, T. Matskewich, Smooth Bezier surfaces over arbitrary quadrilateral meshes (2014, preprint). arXiv:1412.1125

    Google Scholar 

  28. M. Bercovier, I. Soloveichik, Overlapping non matching meshes domain decomposition method in isogeometric analysis (2015, preprint). arXiv:1502.03756

    Google Scholar 

  29. M.J. Borden, C.V. Verhoosel, M.A. Scott, T.J.R. Hughes, C.M. Landis, A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng. 217–220, 77–95 (2012)

    MATH  MathSciNet  Google Scholar 

  30. M.J. Borden, T.J.R. Hughes, C.M. Landis, C.V. Verhoosel, A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput. Methods Appl. Mech. Eng. 273, 100–118 (2014)

    MATH  MathSciNet  Google Scholar 

  31. J. Bremer, Z. Gimbutas, V. Rokhlin, A nonlinear optimization procedure for generalized Gaussian quadratures. SIAM J. Sci. Comput. 32, 1761–1788 (2010)

    MATH  MathSciNet  Google Scholar 

  32. A. Bressan, Isogeometric regular discretization for the Stokes problem. IMA J. Numer. Anal. 31, 1334–1356 (2011)

    MATH  MathSciNet  Google Scholar 

  33. A. Bressan, G. Sangalli, Isogeometric discretizations of the Stokes problem: stability analysis by the macroelement technique. IMA J. Numer. Anal. 33, 629–651 (2013)

    MATH  MathSciNet  Google Scholar 

  34. E. Brivadis, A. Buffa, B. Wohlmuth, L. Wunderlich, Isogeometric mortar methods. Comput. Methods Appl. Mech. Eng. 284, 292–319 (2015)

    MATH  MathSciNet  Google Scholar 

  35. F. Buchegger, B. Jüttler, A. Mantzaflaris, Adaptively refined multi-patch B-splines with enhanced smoothness. Appl. Math. Comput. 272, 159–172 (2016)

    MATH  MathSciNet  Google Scholar 

  36. A. Buffa, C. Giannelli, Adaptive isogeometric methods with hierarchical splines: optimality and convergence rates. Math. Models Methods Appl. Sci. 27, 2781 (2017)

    MATH  MathSciNet  Google Scholar 

  37. A. Buffa, C. de Falco, G. Sangalli, Isogeometric analysis: stable elements for the 2D Stokes equation. Int. J. Numer. Methods Fluids 65, 1407–1422 (2011)

    MATH  MathSciNet  Google Scholar 

  38. A. Buffa, J. Rivas, G. Sangalli, R. Vázquez, Isogeometric discrete differential forms in three dimensions. SIAM J. Numer. Anal. 49, 818–844 (2011)

    MATH  MathSciNet  Google Scholar 

  39. A. Buffa, H. Harbrecht, A. Kunoth, G. Sangalli, BPX-preconditioning for isogeometric analysis. Comput. Methods Appl. Mech. Eng. 265, 63–70 (2013)

    MATH  MathSciNet  Google Scholar 

  40. A. Buffa, G. Sangalli, C. Schwab, Exponential convergence of the hp version of isogeometric analysis in 1D, in Spectral and High Order Methods for Partial Differential Equations–ICOSAHOM 2012, ed. by M. Azaiez, H. El Fekih, J.S. Hesthaven. Lecture Notes in Computational Science and Engineering, vol. 95 (Springer, Berlin, 2014), pp. 191–203

    MATH  Google Scholar 

  41. F. Calabrò, C. Manni, F. Pitolli, Computation of quadrature rules for integration with respect to refinable functions on assigned nodes. Appl. Numer. Math. 90, 168–189 (2015)

    MATH  MathSciNet  Google Scholar 

  42. F. Calabrò, G. Sangalli, M. Tani, Fast formation of isogeometric Galerkin matrices by weighted quadrature. Comput. Methods Appl. Mech. Eng. 316, 606–622 (2017)

    MathSciNet  Google Scholar 

  43. F. Cirak, M.J. Scott, E.K. Antonsson, M. Ortiz, P. Schröder, Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision. Comput. Aided Des. 34, 137–148 (2002)

    Google Scholar 

  44. E. Cohen, R. Riesenfeld, G. Elber, Geometric Modeling with Splines: An Introduction, vol. 1 (AK Peters, Wellesley, 2001)

    Google Scholar 

  45. E. Cohen, T. Martin, R.M. Kirby, T. Lyche, R.F. Riesenfeld, Analysis-aware modeling: understanding quality considerations in modeling for isogeometric analysis. Comput. Methods Appl. Mech. Eng. 199, 334–356 (2010)

    MATH  MathSciNet  Google Scholar 

  46. N. Collier, D. Pardo, L. Dalcin, M. Paszynski, V.M. Calo, The cost of continuity: a study of the performance of isogeometric finite elements using direct solvers. Comput. Methods Appl. Mech. Eng. 213, 353–361 (2012)

    MATH  MathSciNet  Google Scholar 

  47. N. Collier, L. Dalcin, D. Pardo, V.M. Calo, The cost of continuity: performance of iterative solvers on isogeometric finite elements. SIAM J. Sci. Comput. 35, A767–A784 (2013)

    MATH  MathSciNet  Google Scholar 

  48. A. Collin, G. Sangalli, T. Takacs, Analysis-suitable G 1 multi-patch parametrizations for C 1 isogeometric spaces. Comput. Aided Geom. Des. 47, 93–113 (2016)

    MATH  MathSciNet  Google Scholar 

  49. J.A. Cottrell, A. Reali, Y. Bazilevs, T.J.R. Hughes, Isogeometric analysis of structural vibrations. Comput. Methods Appl. Mech. Eng. 195, 5257–5296 (2006)

    MATH  MathSciNet  Google Scholar 

  50. J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA (Wiley, Hoboken, 2009)

    MATH  Google Scholar 

  51. C. de Boor, A Practical Guide to Splines, revised edn. (Springer, New York, 2001)

    Google Scholar 

  52. R. Dimitri, L. De Lorenzis, M. Scott, P. Wriggers, R. Taylor, G. Zavarise, Isogeometric large deformation frictionless contact using T-splines. Comput. Methods Appl. Mech. Eng. 269, 394–414 (2014)

    MATH  MathSciNet  Google Scholar 

  53. T. Dokken, T. Lyche, K.F. Pettersen, Polynomial splines over locally refined box-partitions. Comput. Aided Geom. Des. 30, 331–356 (2013)

    MATH  MathSciNet  Google Scholar 

  54. M. Donatelli, C. Garoni, C. Manni, S. Serra-Capizzano, H. Speleers, Robust and optimal multi-iterative techniques for IgA Galerkin linear systems. Comput. Methods Appl. Mech. Eng. 284, 230–264 (2015)

    MATH  MathSciNet  Google Scholar 

  55. M. Dörfel, B. Jüttler, B. Simeon, Adaptive isogeometric analysis by local h-refinement with T-splines. Comput. Methods Appl. Mech. Eng. 199, 264–275 (2010)

    MATH  MathSciNet  Google Scholar 

  56. J.A. Evans, T.J.R. Hughes, Isogeometric divergence-conforming B-splines for the Darcy-Stokes-Brinkman equations. Math. Models Methods Appl. Sci. 23, 671–741 (2013)

    MATH  MathSciNet  Google Scholar 

  57. J.A. Evans, T.J.R. Hughes, Isogeometric divergence-conforming B-splines for the Steady Navier-Stokes Equations. Math. Models Methods Appl. Sci. 23, 1421–1478 (2013)

    MATH  MathSciNet  Google Scholar 

  58. J.A. Evans, T.J.R. Hughes, Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations. J. Comput. Phys. 241, 141–167 (2013)

    MATH  MathSciNet  Google Scholar 

  59. J.A. Evans, Y. Bazilevs, I. Babuška, T.J.R. Hughes, n-widths, sup-infs, and optimality ratios for the k-version of the isogeometic finite element method. Comput. Methods Appl. Mech. Eng. 198, 1726–1741 (2009)

    MATH  MathSciNet  Google Scholar 

  60. K.P.S. Gahalaut, J.K. Kraus, S.K. Tomar, Multigrid methods for isogeometric discretization. Comput. Methods Appl. Mech. Eng. 253, 413–425 (2013)

    MATH  MathSciNet  Google Scholar 

  61. L. Gao, Kronecker products on preconditioning, Ph.D. thesis, King Abdullah University of Science and Technology, 2013

    Google Scholar 

  62. H. Gómez, V. Calo, Y. Bazilevs, T.J.R. Hughes, Isogeometric analysis of the Cahn–Hilliard phase-field model. Comput. Methods Appl. Mech. Eng. 197, 4333–4352 (2008)

    MATH  MathSciNet  Google Scholar 

  63. H. Gómez, T.J.R. Hughes, X. Nogueira, V.M. Calo, Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations. Comput. Methods Appl. Mech. Eng. 199, 1828–1840 (2010)

    MATH  MathSciNet  Google Scholar 

  64. P.L. Gould, Introduction to Linear Elasticity (Springer, Berlin, 1994)

    Google Scholar 

  65. M. Hillman, J. Chen, Y. Bazilevs, Variationally consistent domain integration for isogeometric analysis. Comput. Methods Appl. Mech. Eng. 284, 521–540 (2015)

    MATH  MathSciNet  Google Scholar 

  66. R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)

    MATH  MathSciNet  Google Scholar 

  67. C. Hofreither, S. Takacs, W. Zulehner, A robust multigrid method for isogeometric analysis using boundary correction. Tech. Rep., NFN (2015)

    Google Scholar 

  68. S. Hosseini, J.J. Remmers, C.V. Verhoosel, R. Borst, An isogeometric solid-like shell element for nonlinear analysis. Int. J. Numer. Methods Eng. 95, 238–256 (2013)

    MATH  MathSciNet  Google Scholar 

  69. T.J.R. Hughes, G. Sangalli, Mathematics of isogeometric analysis: a conspectus, in Encyclopedia of Computational Mechanics ed. by S. Erwin, R. de Borst, T.J.R. Hughes, 2nd edn. (Wiley, Hoboken, 2017)

    Google Scholar 

  70. T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    MATH  MathSciNet  Google Scholar 

  71. T.J.R. Hughes, A. Reali, G. Sangalli, Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS. Comput. Methods Appl. Mech. Eng. 197, 4104–4124 (2008)

    MATH  MathSciNet  Google Scholar 

  72. T.J.R. Hughes, A. Reali, G. Sangalli, Efficient quadrature for NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 199, 301–313 (2010)

    MATH  MathSciNet  Google Scholar 

  73. T.J.R. Hughes, J.A. Evans, A. Reali, Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Comput. Methods Appl. Mech. Eng. 272, 290–320 (2014)

    MATH  MathSciNet  Google Scholar 

  74. Z. Johan, T.J.R. Hughes, A globally convergent matrix-free algorithm for implicit time-marching schemes arising in finite element analysis in fluids. Comput. Methods Appl. Mech. Eng. 87, 281–304 (1991)

    MATH  Google Scholar 

  75. K.A. Johannessen, Optimal quadrature for univariate and tensor product splines. Comput. Methods Appl. Mech. Eng. 316, 84–99 (2017)

    MathSciNet  Google Scholar 

  76. B. Jüttler, A. Mantzaflaris, R. Perl, M. Rumpf, On isogeometric subdivision methods for PDEs on surfaces. Technical Report (2015). arXiV:1503.03730

    Google Scholar 

  77. M. Kapl, V. Vitrih, B. Jüttler, K. Birner, Isogeometric analysis with geometrically continuous functions on two-patch geometries. Comput. Math. Appl. 70, 1518–1538 (2015)

    MathSciNet  Google Scholar 

  78. J. Kiendl, K.U. Bletzinger, J. Linhard, R. Wuchner, Isogeometric shell analysis with Kirchhoff–Love elements. Comput. Methods Appl. Mech. Eng. 198, 3902–3914 (2009)

    MATH  MathSciNet  Google Scholar 

  79. J. Kiendl, Y. Bazilevs, M.C. Hsu, R. Wüchner, K.U. Bletzinger, The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput. Methods Appl. Mech. Eng. 199, 2403–2416 (2010)

    MATH  MathSciNet  Google Scholar 

  80. R.C. Kirby, Fast simplicial finite element algorithms using Bernstein polynomials. Numer. Math. 117, 631–652 (2011)

    MATH  MathSciNet  Google Scholar 

  81. S.K. Kleiss, C. Pechstein, B. Jüttler, S. Tomar, IETI–isogeometric tearing and interconnecting. Comput. Methods Appl. Mech. Eng. 247–248, 201–215 (2012)

    MATH  MathSciNet  Google Scholar 

  82. D. Liu, J. Hoschek, GC1 continuity conditions between adjacent rectangular and triangular Bézier surface patches. Comput. Aided Des. 21, 194–200 (1989)

    MATH  Google Scholar 

  83. R.E. Lynch, J.R. Rice, D.H. Thomas, Direct solution of partial difference equations by tensor product methods. Numer. Math. 6, 185–199 (1964)

    MATH  MathSciNet  Google Scholar 

  84. A. Mantzaflaris, B. Jüttler, B. Khoromskij, U. Langer, Matrix generation in isogeometric analysis by low rank tensor approximation, in Curves and Surfaces: 8th International Conference, Paris, 2014

    Google Scholar 

  85. B. Marussig, T.J.R. Hughes, A review of trimming in isogeometric analysis: challenges, data exchange and simulation aspects. Arch. Comput. Methods Eng. 24, 1–69 (2017)

    Google Scholar 

  86. P. Monk, Finite Element Methods for Maxwell’s Equations (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  87. B. Mourrain, R. Vidunas, N. Villamizar, Dimension and bases for geometrically continuous splines on surfaces of arbitrary topology. Comput. Aided Geom. Des. 45, 108–133 (2016)

    MATH  MathSciNet  Google Scholar 

  88. T. Nguyen, J. Peters, Refinable C 1 spline elements for irregular quad layout. Comput. Aided Geom. Des. 43, 123–130 (2016)

    MATH  MathSciNet  Google Scholar 

  89. T. Nguyen, K. Karčiauskas, J. Peters, A comparative study of several classical, discrete differential and isogeometric methods for solving Poisson’s equation on the disk. Axioms 3, 280–299 (2014)

    MATH  Google Scholar 

  90. J. Peters, Smooth interpolation of a mesh of curves. Constr. Approx. 7, 221–246 (1991)

    MATH  MathSciNet  Google Scholar 

  91. L. Piegl, W. Tiller, The NURBS Book (Springer, New York, 1997)

    MATH  Google Scholar 

  92. P. Rasetarinera, M.Y. Hussaini, An efficient implicit discontinuous spectral Galerkin method. J. Comput. Phys. 172, 718–738 (2001)

    MATH  Google Scholar 

  93. D.F. Rogers, An Introduction to NURBS: With Historical Perspective (Morgan Kaufmann, San Francisco, 2001)

    Google Scholar 

  94. T. Rüberg, F. Cirak, Subdivision-stabilised immersed B-spline finite elements for moving boundary flows. Comput. Methods Appl. Mech. Eng. 209–212, 266–283 (2012)

    MATH  MathSciNet  Google Scholar 

  95. M. Ruess, D. Schillinger, Y. Bazilevs, V. Varduhn, E. Rank, Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. Int. J. Numer. Methods Eng. 95, 811–846 (2013)

    MATH  MathSciNet  Google Scholar 

  96. G. Sangalli, M. Tani, Isogeometric preconditioners based on fast solvers for the Sylvester equation. SIAM J. Sci. Comput. 38, A3644–A3671 (2016)

    MATH  MathSciNet  Google Scholar 

  97. G. Sangalli, M. Tani, Matrix-free isogeometric analysis: the computationally efficient k-method (2017). ArXiv e-print 1712.08565

    Google Scholar 

  98. G. Sangalli, T. Takacs, R. Vázquez, Unstructured spline spaces for isogeometric analysis based on spline manifolds. Comput. Aided Geom. Des. 47, 61–82 (2016)

    MATH  MathSciNet  Google Scholar 

  99. D. Schillinger, L. Dedè, M.A. Scott, J.A. Evans, M.J. Borden, E. Rank, T.R. Hughes, An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput. Methods Appl. Mech. Eng. 249–252, 116–150 (2012)

    MATH  MathSciNet  Google Scholar 

  100. D. Schillinger, J.A. Evans, A. Reali, M.A. Scott, T.J.R. Hughes, Isogeometric collocation: cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations. Comput. Methods Appl. Mech. Eng. 267, 170–232 (2013)

    MATH  MathSciNet  Google Scholar 

  101. D. Schillinger, S.J. Hossain, T.J.R. Hughes, Reduced Bézier element quadrature rules for quadratic and cubic splines in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 277, 1–45 (2014)

    MATH  Google Scholar 

  102. L.L. Schumaker, Spline Functions: Basic Theory, 3rd edn. (Cambridge University Press, Cambridge, 2007)

    MATH  Google Scholar 

  103. C. Schwab, p- and hp-Finite Element Methods (The Clarendon Press/Oxford University Press, New York, 1998)

    MATH  Google Scholar 

  104. M.A. Scott, X. Li, T.W. Sederberg, T.J.R. Hughes, Local refinement of analysis-suitable T-splines. Comput. Methods Appl. Mech. Eng. 213–216, 206–222 (2012)

    MATH  MathSciNet  Google Scholar 

  105. M.A. Scott, R.N. Simpson, J.A. Evans, S. Lipton, S.P.A. Bordas, T.J.R. Hughes, T.W. Sederberg, Isogeometric boundary element analysis using unstructured T-splines. Comput. Methods Appl. Mech. Eng. 254, 197–221 (2013)

    MATH  MathSciNet  Google Scholar 

  106. M.A. Scott, D.C. Thomas, E.J. Evans, Isogeometric spline forests. Comput. Methods Appl. Mech. Eng. 269, 222–264 (2014)

    MATH  MathSciNet  Google Scholar 

  107. T. Sederberg, J. Zheng, A. Bakenov, A. Nasri, T-splines and T-NURCCSs. ACM Trans. Graph. 22, 477–484 (2003)

    Google Scholar 

  108. T. Sederberg, D. Cardon, G. Finnigan, N. North, J. Zheng, T. Lyche, T-spline simplification and local refinement. ACM Trans. Graph. 23, 276–283 (2004)

    Google Scholar 

  109. T.W. Sederberg, G.T. Finnigan, X. Li, H. Lin, H. Ipson, Watertight trimmed NURBS. ACM Trans. Graph. 27, 79 (2008)

    Google Scholar 

  110. V. Simoncini, Computational methods for linear matrix equations. SIAM Rev. 58(3), 377–441 (2013)

    MATH  MathSciNet  Google Scholar 

  111. G. Strang, G.J. Fix, An Analysis of the Finite Element Method, vol. 212 (Prentice-Hall, Englewood Cliffs, 1973)

    MATH  Google Scholar 

  112. T. Takacs, Construction of smooth isogeometric function spaces on singularly parameterized domains, in Curves and Surfaces (Springer, Berlin, 2014), pp. 433–451

    MATH  Google Scholar 

  113. T. Takacs, B. Jüttler, Existence of stiffness matrix integrals for singularly parameterized domains in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 200, 3568–3582 (2011)

    MATH  MathSciNet  Google Scholar 

  114. T. Takacs, B. Jüttler, H 2 regularity properties of singular parameterizations in isogeometric analysis. Graph. Model. 74, 361–372 (2012)

    Google Scholar 

  115. S. Takacs, T. Takacs, Approximation error estimates and inverse inequalities for B-splines of maximum smoothness. Math. Models Methods Appl. Sci. 26, 1411–1445 (2016)

    MATH  MathSciNet  Google Scholar 

  116. T. Takacs, B. Jüttler, O. Scherzer, Derivatives of isogeometric functions on n-dimensional rational patches in R d. Comput. Aided Geom. Des. 31, 567–581 (2014)

    MATH  MathSciNet  Google Scholar 

  117. M. Tani, A preconditioning strategy for linear systems arising from nonsymmetric schemes in isogeometric analysis. Comput. Math. Appl. 74, 1690–1702 (2017)

    MATH  MathSciNet  Google Scholar 

  118. R.L. Taylor, Isogeometric analysis of nearly incompressible solids. Int. J. Numer. Methods Eng. 87, 273–288 (2011)

    MATH  MathSciNet  Google Scholar 

  119. D. Toshniwal, H. Speleers, R.R. Hiemstra, T.J.R. Hughes, Multi-degree smooth polar splines: a framework for geometric modeling and isogeometric analysis. Comput. Methods Appl. Mech. Eng. 316, 1005–1061 (2017)

    MathSciNet  Google Scholar 

  120. D. Toshniwal, H. Speleers, T.J.R. Hughes, Smooth cubic spline spaces on unstructured quadrilateral meshes with particular emphasis on extraordinary points: geometric design and isogeometric analysis considerations. Comput. Methods Appl. Mech. Eng. 327, 411–458 (2017)

    MathSciNet  Google Scholar 

  121. H.M. Tufo, P.F. Fischer, Terascale spectral element algorithms and implementations, in Proceedings of the 1999 ACM/IEEE Conference on Supercomputing (ACM, New York, 1999), p. 68

    Google Scholar 

  122. R. van Nieuwpoort, Solving Poisson’s equation with dataflow computing. Master’s thesis, Delft University of Technology, 2017

    Google Scholar 

  123. T.M. van Opstal, J. Yan, C. Coley, J.A. Evans, T. Kvamsdal, Y. Bazilevs, Isogeometric divergence-conforming variational multiscale formulation of incompressible turbulent flows. Comput. Methods Appl. Mech. Eng. 316, 859–879 (2017)

    MathSciNet  Google Scholar 

  124. R. Vázquez, A new design for the implementation of isogeometric analysis in Octave and Matlab: GeoPDEs 3.0. Tech. Rep., IMATI Report Series (2016)

    Google Scholar 

  125. R. Vázquez, A new design for the implementation of isogeometric analysis in Octave and Matlab: GeoPDEs 3.0. Comput. Math. Appl. 72, 523–554 (2016)

    MATH  MathSciNet  Google Scholar 

  126. C.V. Verhoosel, M.A. Scott, R. De Borst, T.J.R. Hughes, An isogeometric approach to cohesive zone modeling. Int. J. Numer. Methods Eng. 87, 336–360 (2011)

    MATH  Google Scholar 

  127. C.V. Verhoosel, M.A. Scott, T.J.R. Hughes, R. de Borst, An isogeometric analysis approach to gradient damage models. Int. J. Numer. Methods Eng. 86, 115–134 (2011)

    MATH  MathSciNet  Google Scholar 

  128. A.V. Vuong, C. Giannelli, B. Jüttler, B. Simeon, A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 200, 3554–3567 (2011)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This chapter is a review of the mathematical results available on IGA. The presentation follows in particular [25, 48, 50, 57, 71, 73, 96]. We thank our colleagues and coauthors: Yuri Bazilevs, Lourenco Beirão da Veiga, Annalisa Buffa, Francesco Calabrò, Annabelle Collin, Austin Cottrell, John Evans, Alessandro Reali, Thomas Takacs, and Rafael Vázquez. Thomas J.R. Hughes was partially supported by the Office of Naval Research (Grant Nos. N00014-17-1-2119, N00014-17-1-2039, and N00014-13-1-0500), and by the Army Research Office (Grant No. W911NF-13-1-0220). Giancarlo Sangalli and Mattia Tani were partially supported by the European Research Council (ERC Consolidator Grant n.616563 HIGEOM). This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Sangalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hughes, T.J.R., Sangalli, G., Tani, M. (2018). Isogeometric Analysis: Mathematical and Implementational Aspects, with Applications. In: Lyche, T., Manni, C., Speleers, H. (eds) Splines and PDEs: From Approximation Theory to Numerical Linear Algebra. Lecture Notes in Mathematics(), vol 2219. Springer, Cham. https://doi.org/10.1007/978-3-319-94911-6_4

Download citation

Publish with us

Policies and ethics