Skip to main content

Foundations of Spline Theory: B-Splines, Spline Approximation, and Hierarchical Refinement

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2219))

Abstract

This chapter presents an overview of polynomial spline theory, with special emphasis on the B-spline representation, spline approximation properties, and hierarchical spline refinement. We start with the definition of B-splines by means of a recurrence relation, and derive several of their most important properties. In particular, we analyze the piecewise polynomial space they span. Then, we present the construction of a suitable spline quasi-interpolant based on local integrals, in order to show how well any function and its derivatives can be approximated in a given spline space. Finally, we provide a unified treatment of recent results on hierarchical splines. We especially focus on the so-called truncated hierarchical B-splines and their main properties. Our presentation is mainly confined to the univariate spline setting, but we also briefly address the multivariate setting via the tensor-product construction and the multivariate extension of the hierarchical approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The original meaning of the word “spline” is a flexible ruler used to draw curves, mainly in the aircraft and shipbuilding industries. The “B” in B-splines stands for basis or basic.

  2. 2.

    The recurrence relation is due to de Boor, Cox and Mansfield [4, 14]. However, it appears already in works by Popoviciu and Chakalov in the 1930s; see [8] for an account of the early history of splines. For the modern theory of splines we refer the reader to the seminal papers by Schoenberg [41,42,43] and Curry/Schoenberg [15, 16]. In their works, B-splines were defined by divided differences of truncated power functions.

  3. 3.

    An explicit expression of (1.51) was given by Greville in [24]. According to Schoenberg [43], Greville reviewed the paper [43] introducing some elegant simplifications.

  4. 4.

    The value Λ j,p,ξ(s) is known as the de Boor–Fix functional [7] applied to s.

  5. 5.

    The inner product formula for cardinal B-splines traces back to [44]. The formula for derivatives of cardinal B-splines can be found in [21] and a generalization for multivariate box splines in [48].

  6. 6.

    This notation means that if λ j(f) uses the value of f or one of its derivatives at \(\xi _{m_j}\) (or \(\xi _{m_j+1}\)) then this value is obtained by taking the one sided limit from the right (or the left).

  7. 7.

    The HB-splines in Definition 7 were introduced by Kraft [28, 29] and further elaborated in [53]. However, the concept of hierarchical splines has a long history; for example, it was used in preconditioning [18, 54], adaptive modeling [19, 20] and adaptive finite elements [25, 30].

  8. 8.

    The truncation approach was introduced in [22] for hierarchical tensor-product splines, but was already developed before in the context of hierarchical Powell–Sabin splines [50]. A generalization towards a broad class of hierarchical spaces can be found in [23].

  9. 9.

    The general telescopic expression for the hierarchical quasi-interpolant was presented in [51]. A special telescopic approximation in the hierarchical setting was already considered in [29].

References

  1. L. Beirão da Veiga, A. Buffa, J. Rivas, G. Sangalli, Some estimates for h-p-k-refinement in isogeometric analysis. Numer. Math. 118, 271–305 (2011)

    Article  MathSciNet  Google Scholar 

  2. L. Beirão da Veiga, A. Buffa, G. Sangalli, R. Vázquez, Analysis-suitable T-splines of arbitrary degree: definition, linear independence and approximation properties. Math. Models Methods Appl. Sci. 23, 1979–2003 (2013)

    Article  MathSciNet  Google Scholar 

  3. W. Böhm, Inserting new knots into B-spline curves. Comput. Aided Des. 12, 199–201 (1980)

    Article  Google Scholar 

  4. C. de Boor, On calculating with B-splines. J. Approx. Theory 6, 50–62 (1972)

    Article  MathSciNet  Google Scholar 

  5. C. de Boor, On local linear functionals which vanish at all B-splines but one, in Theory of Approximation with Applications, ed. by A.G. Law, N.B. Sahney (Academic Press, New York, 1976), pp. 120–145

    Google Scholar 

  6. C. de Boor, A Practical Guide to Splines, revised edn. (Springer, New York, 2001)

    Google Scholar 

  7. C. de Boor, G.J. Fix, Spline approximation by quasiinterpolants. J. Approx. Theory 8, 19–45 (1973)

    Article  MathSciNet  Google Scholar 

  8. C. de Boor, A. Pinkus, The B-spline recurrence relations of Chakalov and of Popoviciu. J. Approx. Theory 124, 115–123 (2003)

    Article  MathSciNet  Google Scholar 

  9. A. Bressan, Some properties of LR-splines. Comput. Aided Geom. Des. 30, 778–794 (2013)

    Article  MathSciNet  Google Scholar 

  10. L. Chakalov, On a certain presentation of the Newton divided differences in interpolation theory and its applications. Godishnik na Sofijskiya Universitet, Fiziko-Matematicheski Fakultet 34, 353–394 (1938)

    Google Scholar 

  11. E. Cohen, T. Lyche, R. Riesenfeld, Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics. Comput. Graphics Image Process. 14, 87–111 (1980)

    Article  Google Scholar 

  12. E. Cohen, T. Lyche, L.L. Schumaker, Degree raising for splines. J. Approx. Theory 46, 170–181 (1986)

    Article  MathSciNet  Google Scholar 

  13. E. Cohen, R.F. Riesenfeld, G. Elber, Geometric Modeling with Splines: An Introduction (A K Peters, Wellesley, 2001)

    Google Scholar 

  14. M.G. Cox, The numerical evaluation of B-splines. J. Inst. Math. Appl. 10, 134–149 (1972)

    Article  MathSciNet  Google Scholar 

  15. H.B. Curry, I.J. Schoenberg, On spline distributions and their limits: the Pólya distribution functions. Bull. AMS 53, 1114, Abstract 380t (1947)

    Google Scholar 

  16. H.B. Curry, I.J. Schoenberg, On Pólya frequency functions IV: the fundamental spline functions and their limits. J. Anal. Math. 17, 71–107 (1966)

    Article  Google Scholar 

  17. T. Dokken, T. Lyche, K.F. Pettersen, Polynomial splines over locally refined box-partitions. Comput. Aided Geom. Des. 30, 331–356 (2013)

    Article  MathSciNet  Google Scholar 

  18. H.C. Elman, X. Zhang, Algebraic analysis of the hierarchical basis preconditioner. SIAM J. Matrix Anal. Appl. 16, 192–206 (1995)

    Article  MathSciNet  Google Scholar 

  19. D.R. Forsey, R.H. Bartels, Hierarchical B-spline refinement. ACM SIGGRAPH Comput. Graph. 22, 205–212 (1988)

    Article  Google Scholar 

  20. D.R. Forsey, R.H. Bartels, Surface fitting with hierarchical splines. ACM Trans. Graph. 14, 134–161 (1995)

    Article  Google Scholar 

  21. C. Garoni, C. Manni, F. Pelosi, S. Serra-Capizzano, H. Speleers, On the spectrum of stiffness matrices arising from isogeometric analysis. Numer. Math. 127, 751–799 (2014)

    Article  MathSciNet  Google Scholar 

  22. C. Giannelli, B. Jüttler, H. Speleers, THB-splines: the truncated basis for hierarchical splines. Comput. Aided Geom. Des. 29, 485–498 (2012)

    Article  MathSciNet  Google Scholar 

  23. C. Giannelli, B. Jüttler, H. Speleers, Strongly stable bases for adaptively refined multilevel spline spaces. Adv. Comput. Math. 40, 459–490 (2014)

    Article  MathSciNet  Google Scholar 

  24. T.N.E. Greville, On the normalisation of the B-splines and the location of the nodes for the case of unequally spaced knots, in Inequalities, ed. by O. Shisha (Academic Press, New York, 1967), pp. 286–290

    Google Scholar 

  25. E. Grinspun, P. Krysl, P. Schröder, CHARMS: a simple framework for adaptive simulation. ACM Trans. Graph. 21, 281–290 (2002)

    Article  Google Scholar 

  26. K. Höllig, J. Hörner, Approximation and Modeling with B-Splines (Society for Industrial and Applied Mathematics, Philadelphia, 2013)

    MATH  Google Scholar 

  27. J. Hoschek, D. Lasser, Fundamentals of Computer Aided Geometric Design (A K Peters, Wellesley, 1993)

    Google Scholar 

  28. R. Kraft, Adaptive and linearly independent multilevel B-splines, in Surface Fitting and Multiresolution Methods, ed. by A. Le Méhauté, C. Rabut, L.L. Schumaker (Vanderbilt University Press, Nashville, 1997), pp. 209–218

    MATH  Google Scholar 

  29. R. Kraft, Adaptive und linear unabhängige Multilevel B-Splines und ihre Anwendungen, Ph.D. thesis, University of Stuttgart, 1998

    Google Scholar 

  30. P. Krysl, E. Grinspun, P. Schröder, Natural hierarchical refinement for finite element methods. Int. J. Numer. Methods Eng. 56, 1109–1124 (2003)

    Article  MathSciNet  Google Scholar 

  31. M.J. Lai, L.L. Schumaker, Spline Functions on Triangulations (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  32. J.M. Lane, R.F. Riesenfeld, A theoretical development for the computer generation and display of piecewise polynomial surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 2, 35–46 (1980)

    Article  Google Scholar 

  33. P.S. de Laplace, Théorie Analytique des Probabilités, 3rd edn. (Courcier, Paris, 1820)

    MATH  Google Scholar 

  34. T. Lyche, A note on the condition numbers of the B-spline bases. J. Approx. Theory 22, 202–205 (1978)

    Article  MathSciNet  Google Scholar 

  35. C. Manni, H. Speleers, Standard and non-standard CAGD tools for isogeometric analysis: a tutorial, in IsoGeometric Analysis: A New Paradigm in the Numerical Approximation of PDEs, ed. by A. Buffa, G. Sangalli. Lecture Notes in Mathematics, vol. 2161 (Springer, Cham, 2016), pp. 1–69

    Google Scholar 

  36. M. Marsden, An identity for spline functions and its application to variation diminishing spline approximation. J. Approx. Theory 3, 7–49 (1970)

    Article  Google Scholar 

  37. T. Popoviciu, Sur quelques propriétés des fonctions d’une ou de deux variables réelles, Ph.D. thesis, Presented to the Faculté des Sciences de Paris. Published by Institutul de Arte Grafice Ardealul, Cluj, 1933

    Google Scholar 

  38. H. Prautzsch, W. Böhm, M. Paluszny, Bézier and B-Spline Techniques (Springer, Berlin, 2002)

    Book  Google Scholar 

  39. W. Rudin, Real and Complex Analysis, 3rd edn. (McGraw-Hill, Singapore, 1987)

    MATH  Google Scholar 

  40. K. Scherer, A.Y. Shadrin, New upper bound for the B-spline basis condition number: II. A proof of de Boor’s 2k-conjecture. J. Approx. Theory 99, 217–229 (1999)

    Article  MathSciNet  Google Scholar 

  41. I.J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions. Part A.–On the problem of smoothing or graduation. A first class of analytic approximation formulae. Q. Appl. Math. 4, 45–99 (1946)

    Article  MathSciNet  Google Scholar 

  42. I.J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions. Part B.–On the problem of osculatory interpolation. A second class of analytic approximation formulae. Q. Appl. Math. 4, 112–141 (1946)

    Article  MathSciNet  Google Scholar 

  43. I.J. Schoenberg, On spline functions, in Inequalities, ed. by O. Shisha (Academic Press, New York, 1967), pp. 255–286

    Google Scholar 

  44. I.J. Schoenberg, Cardinal interpolation and spline functions. J. Approx. Theory 2, 167–206 (1969)

    Article  MathSciNet  Google Scholar 

  45. L.L. Schumaker, Spline Functions: Basic Theory, 3rd edn. (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  46. T.W. Sederberg, J. Zheng, A. Bakenov, A. Nasri, T-splines and T-NURCCs. ACM Trans. Graph. 22, 477–484 (2003)

    Article  Google Scholar 

  47. A. Sharma, A. Meir, Degree of approximation of spline interpolation. J. Math. Mech. 15, 759–768 (1966)

    MathSciNet  MATH  Google Scholar 

  48. H. Speleers, Inner products of box splines and their derivatives. BIT Numer. Math. 55, 559–567 (2015)

    Article  MathSciNet  Google Scholar 

  49. H. Speleers, Hierarchical spline spaces: quasi-interpolants and local approximation estimates. Adv. Comput. Math. 43, 235–255 (2017)

    Article  MathSciNet  Google Scholar 

  50. H. Speleers, P. Dierckx, S. Vandewalle, Quasi-hierarchical Powell–Sabin B-splines. Comput. Aided Geom. Des. 26, 174–191 (2009)

    Article  MathSciNet  Google Scholar 

  51. H. Speleers, C. Manni, Effortless quasi-interpolation in hierarchical spaces. Numer. Math. 132, 155–184 (2016)

    Article  MathSciNet  Google Scholar 

  52. S. Takacs, T. Takacs, Approximation error estimates and inverse inequalities for B-splines of maximum smoothness. Math. Models Methods Appl. Sci. 26, 1411–1445 (2016)

    Article  MathSciNet  Google Scholar 

  53. A.V. Vuong, C. Giannelli, B. Jüttler, B. Simeon, A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 200, 3554–3567 (2011)

    Article  MathSciNet  Google Scholar 

  54. H. Yserentant, On the multilevel splitting of finite element spaces. Numer. Math. 49, 379–412 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Speleers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lyche, T., Manni, C., Speleers, H. (2018). Foundations of Spline Theory: B-Splines, Spline Approximation, and Hierarchical Refinement. In: Lyche, T., Manni, C., Speleers, H. (eds) Splines and PDEs: From Approximation Theory to Numerical Linear Algebra. Lecture Notes in Mathematics(), vol 2219. Springer, Cham. https://doi.org/10.1007/978-3-319-94911-6_1

Download citation

Publish with us

Policies and ethics