Skip to main content

Utility of OCT for Detection or Monitoring of Glaucoma in Myopic Eyes

  • Chapter
  • First Online:
Optical Coherence Tomography in Glaucoma

Abstract

Evaluation of glaucomatous structural changes in myopic eyes is difficult due to the considerable morphological variations in the optic nerve head (ONH) and other posterior segment structures of the eye. The ONH can frequently mimic glaucoma in healthy myopic eyes. Optical coherence tomography (OCT) allows in vivo quantitative analysis of the ONH, retinal nerve fiber layer (RNFL), and macular area but interpreting the findings in myopic and especially highly myopic eyes, may be challenging due to the anatomical changes associated with enlargement of the eye; this is complicated by the absence of normative databases tailored to myopic individuals. Still, OCT can be used as a complementary test to clinical exam and visual field testing for detection of glaucoma as well as for progression analysis. Clinicians should be familiar with the practical aspects and cognizant of the pitfalls of OCT imaging in patients with myopia with or without glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shim SH, Sung KR, Kim JM, Kim HT, Jeong J, Kim CY, Lee MY, Park KH. Korean ophthalmological society. The prevalence of open-angle glaucoma by age in myopia: the Korea National Health and nutrition examination survey. Curr Eye Res. 2017;42:65–71.

    Article  Google Scholar 

  2. Chon B, Qiu M, Lin SC. Myopia and glaucoma in the south Korean population. Invest Ophthalmol Vis Sci. 2013;54:6570–7.

    Article  Google Scholar 

  3. Mitchell P, Hourihan F, Sandbach J, Wang JJ. The relationship between glaucoma and myopia: the blue mountains eye study. Ophthalmology. 1999;106:2010–5.

    Article  CAS  Google Scholar 

  4. Xu L, Li Y, Wang S, Wang Y, Wang Y, Jonas JB. Characteristics of highly myopic eyes: the Beijing eye study. Ophthalmology. 2007;114:121–6.

    Article  Google Scholar 

  5. Melo GB, Libera RD, Barbosa AS, Pereira LM, Doi LM, Melo LA Jr. Comparison of optic disk and retinal nerve fiber layer thickness in nonglaucomatous and glaucomatous patients with high myopia. Am J Ophthalmol. 2006;142:858–60.

    Article  Google Scholar 

  6. You QS, Peng XY, Xu L, Chen CX, Wang YX, Jonas JB. Myopic maculopathy imaged by optical coherence tomography: the Beijing eye study. Ophthalmology. 2014;121:220–4.

    Article  Google Scholar 

  7. Leung CK, Mohamed S, Leung KS, Cheung CY, Chan SL, Cheng DK, Lee AK, Leung GY, Rao SK, Lam DS. Retinal nerve fiber layer measurements in myopia: an optical coherence tomography study. Invest Ophthalmol Vis Sci. 2006;47:5171–6.

    Article  Google Scholar 

  8. Wong YZ, Lam AK. The roles of cornea and axial length in corneal hysteresis among emmetropes and high myopes: a pilot study. Curr Eye Res. 2015;40:282–9.

    Article  Google Scholar 

  9. Jiang Z, Shen M, Mao G, Chen D, Wang J, Qu J, Lu F. Association between corneal biomechanical properties and myopia in Chinese subjects. Eye (Lond). 2011;25:1083–9.

    Article  CAS  Google Scholar 

  10. Shen M, Fan F, Xue A, Wang J, Zhou X, Lu F. Biomechanical properties of the cornea in high myopia. Vis Res. 2008;48:2167–71.

    Article  Google Scholar 

  11. Kim TW, Kim M, Weinreb RN, Woo SJ, Park KH, Hwang JM. Optic disc change with incipient myopia of childhood. Ophthalmology. 2012;119:21–6.

    Article  Google Scholar 

  12. Jonas JB, Gusek GC, Naumann GO. Optic disk morphometry in high myopia. Graefes Arch Clin Exp Ophthalmol. 1988;226:587–90.

    Article  CAS  Google Scholar 

  13. Witmer MT, Margo CE, Drucker M. Tilted optic disks. Surv Ophthalmol. 2010;55:403–28.

    Article  Google Scholar 

  14. Jonas JB, Xu L. Histological changes of high axial myopia. Eye (Lond). 2014;28:113–7.

    Article  CAS  Google Scholar 

  15. Morgan WH, Yu DY, Alder VA, Cringle SJ, Cooper RL, House PH, Constable IJ. The correlation between cerebrospinal fluid pressure and retrolaminar tissue pressure. Invest Ophthalmol Vis Sci. 1998;39:1419–28.

    PubMed  CAS  Google Scholar 

  16. Tezel G, Trinkaus K, Wax MB. Alterations in the morphology of lamina cribrosa pores in glaucomatous eyes. Br J Ophthalmol. 2004;88:251–6.

    Article  CAS  Google Scholar 

  17. Tay E, Seah SK, Chan SP, Lim AT, Chew SJ, Foster PJ, Aung T. Optic disk ovality as an index of tilt and its relationship to myopia and perimetry. Am J Ophthalmol. 2005;139:247–52.

    Article  Google Scholar 

  18. Jonas JB. Optic disk size correlated with refractive error. Am J Ophthalmol. 2005;139:346–8.

    Article  Google Scholar 

  19. Jonas JB, Nguyen XN, Gusek GC, Naumann GO. Parapapillary chorioretinal atrophy in normal and glaucoma eyes. I. Morphometric data. Invest Ophthalmol Vis Sci. 1989;30:908–18.

    PubMed  CAS  Google Scholar 

  20. Jonas JB, Budde WM, Panda-Jones S. Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol. 1999;43:293–320.

    Article  CAS  Google Scholar 

  21. Jonas JB, Jonas SB, Jonas RA, Holbach L, Dai Y, Sun X, Panda-Jonas S. Parapapillary atrophy: histological gamma zone and delta zone. PLoS One. 2012;7(10):e47237.

    Article  CAS  Google Scholar 

  22. Dichtl A, Jonas JB, Naumann GO. Histomorphometry of the optic disc in highly myopic eyes with absolute secondary angle closure glaucoma. Br J Ophthalmol. 1998;82:286–9.

    Article  CAS  Google Scholar 

  23. Fantes FE, Anderson DR. Clinical histologic correlation of human peripapillary anatomy. Ophthalmology. 1989;96:20–5.

    Article  CAS  Google Scholar 

  24. Dai Y, Jonas JB, Huang H, Wang M, Sun X. Microstructure of parapapillary atrophy: beta zone and gamma zone. Invest Ophthalmol Vis Sci. 2013;54:2013–8.

    Article  Google Scholar 

  25. Ng DS, Cheung CY, Luk FO, Mohamed S, Brelen ME, Yam JC, Tsang CW, Lai TY. Advances of optical coherence tomography in myopia and pathologic myopia. Eye (Lond). 2016;30:901–16.

    Article  CAS  Google Scholar 

  26. Hosseini H, Nassiri N, Azarbod P, Giaconi J, Chou T, Caprioli J, Nouri-Mahdavi K. Measurement of the optic disc vertical tilt angle with spectral-domain optical coherence tomography and influencing factors. Am J Ophthalmol. 2013;156:737–44.

    Article  Google Scholar 

  27. Kimura Y, Akagi T, Hangai M, Takayama K, Hasegawa T, Suda K, Yoshikawa M, Yamada H, Nakanishi H, Unoki N, Ikeda HO, Yoshimura N. Lamina cribrosa defects and optic disc morphology in primary open angle glaucoma with high myopia. PLoS One. 2014;9(12):e115313. https://doi.org/10.1371/journal.pone.0115313. eCollection 2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kang SH, Hong SW, Im SK, Lee SH, Ahn MD. Effect of myopia on the thickness of the retinal nerve fiber layer measured by cirrus HD optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51:4075–83.

    Article  Google Scholar 

  29. Lee KH, Kim CY, Kim NR. Variations of retinal nerve fiber layer thickness and ganglion cell-inner plexiform layer thickness according to the torsion direction of optic disc. Invest Ophthalmol Vis Sci. 2014;55:1048–55.

    Article  Google Scholar 

  30. Bae SH, Kang SH, Feng CS, Park J, Jeong JH, Yi K. Influence of myopia on size of optic nerve head and retinal nerve fiber layer thickness measured by spectral domain optical coherence tomography. Korean J Ophthalmol. 2016;30:335–43.

    Article  Google Scholar 

  31. Budenz DL, Anderson DR, Varma R, Schuman J, Cantor L, Savell J, Greenfield DS, Patella VM, Quigley HA, Tielsch J. Determinants of normal retinal nerve fiber layer thickness measured by stratus OCT. Ophthalmology. 2007;114:1046–52.

    Article  Google Scholar 

  32. Nowroozizadeh S, Cirineo N, Amini N, Knipping S, Chang T, Chou T, Caprioli J, Nouri-Mahdavi K. Influence of correction of ocular magnification on spectral-domain OCT retinal nerve fiber layer measurement variability and performance. Invest Ophthalmol Vis Sci. 2014;55:3439–46.

    Article  Google Scholar 

  33. Savini G, Barboni P, Parisi V, Carbonelli M. The influence of axial length on retinal nerve fibre layer thickness and optic-disc size measurements by spectral-domain OCT. Br J Ophthalmol. 2012;96:57–61.

    Article  Google Scholar 

  34. Seol BR, Kim DM, Park KH, Jeoung JW. Assessment of optical coherence tomography color probability codes in myopic glaucoma eyes after applying a myopic normative database. Am J Ophthalmol. 2017;183:147–55.

    Article  Google Scholar 

  35. Zhang C, Tatham AJ, Weinreb RN, Zangwill LM, Yang Z, Zhang JZ, Medeiros FA. Relationship between ganglion cell layer thickness and estimated retinal ganglion cell counts in the glaucomatous macula. Ophthalmology. 2014;121:2371–9.

    Article  Google Scholar 

  36. Shoji T, Sato H, Ishida M, Takeuchi M, Chihara E. Assessment of glaucomatous changes in subjects with high myopia using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:1098–102.

    Article  Google Scholar 

  37. Kim NR, Lee ES, Seong GJ, Kang SY, Kim JH, Hong S, Kim CY. Comparing the ganglion cell complex and retinal nerve fibre layer measurements by Fourier domain OCT to detect glaucoma in high myopia. Br J Ophthalmol. 2011;95:1115–21.

    Article  Google Scholar 

  38. Akashi A, Kanamori A, Ueda K, Inoue Y, Yamada Y, Nakamura M. The ability of SD-OCT to differentiate early glaucoma with high myopia from highly myopic controls and nonhighly myopic controls. Invest Ophthalmol Vis Sci. 2015;56:6573–80.

    Article  Google Scholar 

  39. Seo S, Lee CE, Jeong JH, Park KH, Kim DM, Jeoung JW. Ganglion cell-inner plexiform layer and retinal nerve fiber layer thickness according to myopia and optic disc area: a quantitative and three-dimensional analysis. BMC Ophthalmol. 2017;17:22. https://doi.org/10.1186/s12886-017-0419-1.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bayer, A., Nouri-Mahdavi, K. (2018). Utility of OCT for Detection or Monitoring of Glaucoma in Myopic Eyes. In: Akman, A., Bayer, A., Nouri-Mahdavi, K. (eds) Optical Coherence Tomography in Glaucoma. Springer, Cham. https://doi.org/10.1007/978-3-319-94905-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94905-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94904-8

  • Online ISBN: 978-3-319-94905-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics