Skip to main content

The Role of an Artificial Intelligence Ecosystem in Radiology

  • Chapter
  • First Online:
Artificial Intelligence in Medical Imaging

Abstract

Moving artificial intelligence tools for diagnostic imaging into routine clinical practice will require cooperation and collaboration between developers, physicians, regulators, and health system administrators. Radiologists can play an important role in promoting this AI ecosystem by delineating AI use cases for diagnostic imaging and developing standardized data elements and workflow integration interfaces. Structured AI use cases that define specific parameters for datasets for algorithm training and testing can promote multiple sites to develop training, and validation datasets, which can help ensure algorithms respect technical, geographic, and demographic diversity in patient populations and image acquisition, are free of unintended bias and are generalizable to widespread clinical practice. Medial specialty societies can play a role in protecting patients from unintended consequences of AI through use case development and developing programs for independent algorithm validation and monitoring the effectiveness and safety of AI tools in clinical practice through AI registries. The development and implementation of AI algorithms for medical imaging will benefit from the establishment of an AI ecosystem that includes physicians, researchers, software developers along with governmental regulatory agencies, the HIT industry, and hospital administrators all working to bring AI tools safely and efficiently into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen B, Dreyer K. The artificial intelligence ecosystem for the radiological sciences: ideas to clinical practice. J Am Coll Radiol. 2018; https://doi.org/10.1016/j.jacr.2018.02.032.

    Article  Google Scholar 

  2. JASON 2017. Artificial intelligence for health and heath care. JSR-17-Task-002.

    Google Scholar 

  3. Definition of Ecosystem. [Internet]. Merrian-webster.com. 2018 [cited 10 June 2018]. Available from: https://www.merriam-webster.com/dictionary/ecosystem

  4. Moore JF. Predators and prey: a new ecology of competition. Harv Bus Rev. 1993 May 1;71(3):75–86.

    CAS  PubMed  Google Scholar 

  5. Moore JF. The death of competition: leadership and strategy in the age of business ecosystems. New York: HarperBusiness; 1996 May.

    Google Scholar 

  6. Messerschmitt DG, Szyperski C. Software ecosystem: understanding an indispensable technology and industry, vol. 1. London: MIT Press Books; 2005.

    Book  Google Scholar 

  7. Seddon JJ, Currie WL. Cloud computing and trans-border health data: unpacking US and EU healthcare regulation and compliance. Health Policy Technol. 2013 Dec 1;2(4):229–41.

    Article  Google Scholar 

  8. Barnett, JC, Berchick, ER. Current population reports, P60–260, Health Insurance Coverage in the United States: 2016, U.S. Washington, DC: Government Printing Office; 2017.

    Google Scholar 

  9. Berwick DM, Nolan TW, Whittington J. The triple aim: care, health, and cost. Health Aff. 2008 May;27(3):759–69.

    Article  Google Scholar 

  10. Bodenheimer T, Sinsky C. From triple to quadruple aim: care of the patient requires care of the provider. Ann Fam Med. 2014 Nov 1;12(6):573–6.

    Article  Google Scholar 

  11. Sikka R, Morath JM, Leape L. The Quadruple Aim: care, health, cost and meaning in work. BMJ Qual Saf. https://doi.org/10.1136/bmjqs-2015-004160.

    Article  Google Scholar 

  12. Thrall JH, Li X, Li Q, Cruz C, Do S, Dreyer K, Brink J. Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success. J Am Coll Radiol. 2018 Mar 1;15(3):504–8.

    Article  Google Scholar 

  13. Lakhani P, Prater AB, Hutson RK, Andriole KP, Dreyer KJ, Morey J, Prevedello LM, Clark TJ, Geis JR, Itri JN, Hawkins CM. Machine learning in radiology: applications beyond image interpretation. J Am Coll Radiol. 2017 Nov 17;15(2):350–9.

    Article  Google Scholar 

  14. Erdal BS, Prevedello LM, Qian S, Demirer M, Little K, Ryu J, O’Donnell T, White RD. Radiology and Enterprise Medical Imaging Extensions (REMIX). J Digit Imaging. 2018 Feb 1;31(1):91–106.

    Article  Google Scholar 

  15. Huffman J. Healthcare Information and Management Systems Society. 2018 March 6.

    Google Scholar 

  16. Turing AM. Computing machinery and intelligence. Mind. 1950 Oct;59(236):433.

    Article  Google Scholar 

  17. Minsky M. Steps toward artificial intelligence. Proc IRE. 1961 Jan;49(1):8–30.

    Article  Google Scholar 

  18. McCarthy J. From here to human-level AI. In Proc. of principles of knowledge representation and reasoning (KR 1996).

    Google Scholar 

  19. Taubes G. The rise and fall of thinking machines. Inc. 1995;17(13):61–5.

    Google Scholar 

  20. Yang Z, Zhu Y, Pu Y. Parallel image processing based on CUDA. In Computer Science and Software Engineering, 2008 International Conference on 2008 Dec 12 (vol. 3, pp. 198–201). IEEE.

    Google Scholar 

  21. Ciregan D, Meier U, Schmidhuber J. Multi-column deep neural networks for image classification. In Computer vision and pattern recognition (CVPR), 2012 IEEE conference on 2012 Jun 16 (pp. 3642–3649). IEEE.

    Google Scholar 

  22. Mobile Fact Sheet. Pew Research Center: Internet, Science & Tech. 2018 [cited 10 June 2018]. Available from http://www.pewinternet.org/fact-sheet/mobile/

  23. Chockley K, Emanuel E. The end of radiology? Three threats to the future practice of radiology. J Am Coll Radiol. 2016 Dec 1;13(12):1415–20.

    Article  Google Scholar 

  24. Remnick D. Obama reckons with a Trump presidency. The New Yorker. 2016 Nov;28:28.

    Google Scholar 

  25. Hinton G. Geoff Hinton on Radiology. Machine Learning and Market for Intelligence Conference, Creative Disruption Lab Toronto, Canada. 2016. Viewable at: https://www.youtube.com/watch?v=2HMPRXstSvQ

  26. Oncology Expert Advisor [Internet]. MD Anderson Cancer Center. 2018 [cited 10 June 2018]. Available from: https://www.mdanderson.org/publications/annual-report/annual-report-2013/the-oncology-expert-advisor.html

  27. Herper M. MD Anderson benches IBM Watson in setback for artificial intelligence in medicine. Forbes. Zugriff im Juli. 2017 Feb.

    Google Scholar 

  28. Ravì D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, Yang GZ. Deep learning for health informatics. IEEE J Biomed Health Inform. 2017 Jan;21(1):4–21.

    Article  Google Scholar 

  29. Deo RC. Machine learning in medicine. Circulation. 2015 Nov 17;132(20):1920–30.

    Article  Google Scholar 

  30. Valente IR, Cortez PC, Neto EC, Soares JM, de Albuquerque VH, Tavares JM. Automatic 3D pulmonary nodule detection in CT images: a survey. Comput Methods Programs Biomed. 2016 Feb 1;124:91–107.

    Article  Google Scholar 

  31. Spampinato C, Palazzo S, Giordano D, Aldinucci M, Leonardi R. Deep learning for automated skeletal bone age assessment in X-ray images. Med Image Anal. 2017 Feb 1;36:41–51.

    Article  CAS  Google Scholar 

  32. Buolamwini J, Gebru T. Gender shades: Intersectional accuracy disparities in commercial gender classification. In Conference on Fairness, Accountability and Transparency 2018 Jan 21 (pp. 77–91).

    Google Scholar 

  33. Health Insurance Portability and Accountability Act of 1996 (HIPAA.)Pub. L. 104–191, 110 Stat. 1936 (1996)

    Google Scholar 

  34. The HIPAA Privacy Rule. 45 CFR 160, 162, and 164. 28 Dec 2000.

    Google Scholar 

  35. The Security Rule. 45 CFR Part 160 and Subparts A and C of Part 164. 20 Feb 2003.

    Google Scholar 

  36. Artificial Intelligence For Health and Health Care. https://www.healthit.gov/sites/default/files/jsr-17-task-002_aiforhealthandhealthcare12122017.pdf

  37. AI has no place in the NHS If patient privacy isn’t assured. Wired. http://www.wired.co.uk/article/ai-healthcare-gp-deepmind-privacy-problems

  38. US Food and Drug Administration. What we do. https://www.fda.gov/AboutFDA/WhatWeDo/

  39. US Food and Drug Administration. Medical Devices.

    Google Scholar 

  40. The 21st Century Cures Act. Pub. L. 114–255.

    Google Scholar 

  41. US Food and Drug Administration. Response To 21st Century Cures Act. https://www.fda.gov/ downloads/MedicalDevices/DeviceRegulationand Guidance/GuidanceDocuments/UCM587820.pdf

  42. US Food and Drug Administration. Software as a medical device. Do. https://www.fda.gov/MedicalDevices/DigitalHealth/SoftwareasaMedical Device/default.htm

  43. US Food and Drug Administration. International Medical Device Regulators Forum. https://www.fda.gov/MedicalDevices/International Programs/IMDRF/default.htm

  44. Qualification of Medical Device Development Tools. https://www.fda.gov/downloads/Medical Devices/DeviceRegulationandGuidance/Guidance Documents/UCM374432.pdf

  45. US Food and Drug Administration. Medical Device Development Tools Program. https://www.fda.gov/MedicalDevices/ScienceandResearch/MedicalDevi ceDevelopmentToolsMDDT

  46. US Food and Drug Administration. National Evaluation System for Health Technology. https://www.fda.gov/aboutfda/centersoffices/office ofmedicalproductsandtobacco/cdrh/cdrhreports/ucm301912.htm

  47. US Food and Drug Administration. National evaluation system for health technology demonstration projects. https://nestcc.org/demonstration-projects/

  48. Lund-RADS Assist: Advanced radiology guidance, reporting and monitoring. https://www.acr.org/Media-Center/ACR-News-Releases/2018/FDA-NEST-Program-Names-ACR-DSI-Use-Case-as-Demo-Project

  49. Digital Health Software Precertification Program. https://www.fda.gov/MedicalDevices/DigitalHealth/DigitalHealthPreCertProgram/default.ht

  50. US FDA Software Precertification Program. https://www.fda.gov/downloads/MedicalDevices/DigitalHealth/DigitalHealthPreCertProgram/UCM605685.pdf

  51. US FDA Classification of Medical Devices. https://www.fda.gov/MedicalDevices/Device RegulationandGuidance/Overview/ClassifyYourDevice/

  52. US FDA de novo request. https://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProd uctsandTobacco/CDRH/CDRHTransparency/ucm232269.htm

  53. US FDA de novo approval clinical decision support software for stroke. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm596575.htm

  54. US FDA de novo approval artificial intelligence based device to detect diabetes related eye problems. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm604357.htm

  55. US FDA de novo approval of artificial intelligence algorithm for aiding providers in detecting wrist fractures. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm608833.htm

  56. US FDA CADe and CADx. https://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm187249.htm

  57. US FDA CADe and CADx. https://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm187277.htm

  58. USFDA approval QuantX as Class II device. https://www.accessdata.fda.gov/cdrh_docs/pdf17/DEN170022.pdf

  59. Boland GW, Duszak R, McGinty G, Allen B. Delivery of appropriateness, quality, safety, efficiency and patient satisfaction. J Am Coll Radiol. 2014 Jan 1;11(1):7–11.

    Article  Google Scholar 

  60. ACR, Imaging 3.0. http://www.acr.org/Advocacy/Economics-Health-Policy/Imaging-3.

  61. Imaging 3.0. https://www.acr.org/-/media/ACR/Files/Imaging3/Imaging3_Overview.pdf

  62. LOINC. Available at: http://loinc.org/about/

  63. Alkasab TK, Bizzo BC, Berland LL, Nair S, Pandharipande PV, Harvey HB. Creation o an open framework for point-of-care computer-assisted reporting and decision support tools for radiologists. J Am Coll Radiol. 2017 Sep 1;14(9):1184–9.

    Article  Google Scholar 

  64. A Brief History of DICOM. In: Digital Imaging and Communications in Medicine (DICOM). Berlin, Heidelberg: Springer; 2008.

    Google Scholar 

  65. HL7 protocols. http://www.hl7.org

  66. Fast Healthcare Interoperability Resources Specification. http://www.hl7.org/implement/standards/product_brief.cfm?product_id=449

  67. Rubin DL, Kahn CE Jr. Common data elements in radiology. Radiology. 2016 Nov 10;283(3):837–44.

    Article  Google Scholar 

  68. Winget MD, Baron JA, Spitz MR, Brenner DE, Warzel D, Kincaid H, Thornquist M, Feng Z. Development of common data elements: the experience of and recommendations from the early detection research network. Int J Med Inform. 2003 Apr 1;70(1):41–8.

    Article  Google Scholar 

  69. Morin RL, Coombs LP, Chatfield MB. ACR dose index registry. J Am Coll Radiol. 2011 Apr 1;8(4):288–91.

    Article  Google Scholar 

  70. ACR National Radiology Data Registry. https://nrdr.acr.org/Portal/Nrdr/Main/page.aspx

  71. Langlotz CP. RadLex: a new method for indexing online educational materials. Radiographics. 2006;26(6)

    Article  Google Scholar 

  72. Structured Reporting. http://www.radreport.org

  73. ACR Select. https://www.acr.org/Clinical-Resources/Clinical-Decision-Support

  74. Boland GW, Thrall JH, Gazelle GS, Samir A, Rosenthal DI, Dreyer KJ, Alkasab TK. Decision support for radiologist report recommendations. J Am Coll Radiol. 2011 Dec 1;8(12):819–23.

    Article  Google Scholar 

  75. Rad Elements. http://www.radelement.org

  76. Miller T, Howe P, Sonenberg L. Explainable AI: Beware of inmates running the asylum. InIJCAI-17 Workshop on Explainable AI (XAI). 2017 (p. 36).

    Google Scholar 

  77. American Medical Association Policy. https://www.ama-assn.org/ama-passes-first-policy-recommendations-augmented-intelligence

  78. Luo W, Phung D, Tran T, Gupta S, Rana S, Karmakar C, Shilton A, Yearwood J, Dimitrova N, Ho TB, Venkatesh S. Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view. J Med Internet Res. 2016 Dec;18(12)

    Article  Google Scholar 

  79. Stodden V. Reproducible research for scientific computing: Tools and strategies for changing the culture. Comput Sci Eng. 2012 Jul;14(4):13–7.

    Article  Google Scholar 

  80. Data Science Bowl Lung Cancer Detection. http://blog.kaggle.com/2017/06/29/2017-data-science-bowl-predicting-lung-cancer-2nd-place-solution-write-up-daniel-hammack-and-julian-de-wit/

  81. Iglovikov V, Rakhlin A, Kalinin A, Shvets A. Pediatric Bone Age Assessment Using Deep Convolutional Neural Networks. arXiv preprint arXiv:1712.05053. 2017 Dec 13.

    Google Scholar 

  82. Kaggle https://www.kaggle.com/c/imagenet-object-localization-challenge

  83. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz C, Shpanskaya K, Lungren MP. CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning. arXiv preprint arXiv:1711.05225. 2017 Nov 14.

    Google Scholar 

  84. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016 Dec 13;316(22):2402–10.

    Article  Google Scholar 

  85. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017 Feb;542(7639):115.

    Article  CAS  Google Scholar 

  86. FDA Announcements. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/default.htm

  87. Reclassification of Medical Image Analyzers. https://www.federalregister.gov/documents/2018/06/04/2018-11880/radiology-devices-reclassification-of-medical-image-analyzers

  88. https://www.cbinsights.com/research/artificial-intelligence-startups-healthcare/

  89. RSNA Machine Learning Showcase. https://www.rsna.org/Machine-Learning-Showcase/

  90. http://www.healthcareitnews.com/news/combination-pacs-and-ai-helps-uncover-what-radiologists-sometimes-miss

  91. Jacobson I. Object-oriented development in an industrial environment. ACM SIGPLAN Not. 1987 Dec 1;22 (12):183–191). ACM.

    Google Scholar 

  92. Alistair C. Writing effective use cases. Michigan: Addison-Wesley; 2001.

    Google Scholar 

  93. ACR DSI. https://www.acrdsi.org/Use-Case-Development

  94. Competitions Kaggle Data Science Bowl. https://www.kaggle.com/c/data-science-bowl-2017

  95. Competitions Kaggle Lung Cancer Risk. https://www.kaggle.com/c/msk-redefining-cancer-treatme nt

  96. Competitions Kaggle Heart Disease. http://www.datasciencebowl.com/competitions/transform ing-how-we-diagnose-heart-disease/

  97. Competitions Kaggle Seizure Prediction. https://www.kaggle.com/c/seizure-prediction

  98. Personal communication. (soon in press_Andriole, Katherine. MGH and BWI Center For Clinical Data Science.

    Google Scholar 

  99. Lung-RADS American College of Radiology. https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Lung-Rads

  100. ACR MICCAI Collaboration. https://www.acr.org/Media-Center/ACR-News-Releases/2018/ACR-and-MICCAI-to-Leverage-AI-Algorithms-to-Meet-Clinical-Needs-in-Radiology

  101. Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP, Ferrero E, Agapow PM, Zietz M, Hoffman MM, Xie W. Opportunities and obstacles for deep learning in biology and medicine. bioRxiv. 2018 Jan;1:142760.

    Google Scholar 

  102. Balthazar P, Harri P, Prater A, Safdar NM. Protecting your patients’ interests in the era of big data, artificial intelligence, and predictive analytics. J Am Coll Radiol. 2018 Mar 1;15(3):580–6.

    Article  Google Scholar 

  103. Berinato S. With big data comes big responsibility. Harv Bus Rev. 2014;92(11):20.

    Google Scholar 

  104. Merkle RC. A digital signature based on a conventional encryption function. In Conference on the theory and application of cryptographic techniques 1987 Aug 16 (pp. 369–378). Berlin, Heidelberg: Springer.

    Google Scholar 

  105. Lazer D, Kennedy R, King G, Vespignani A. The parable of Google Flu: traps in big data analysis. Science. 2014 Mar 14;343(6176):1203–5.

    Article  CAS  Google Scholar 

  106. Clinical trials. https://clinicaltrials.gov/ct2/show/NCT01189331

  107. Ekblaw A, Azaria A, Halamka JD, Lippman A. A case study for blockchain in healthcare: “MedRec” prototype for electronic health records and medical research data. In Proceedings of IEEE Open & Big Data Conference 2016 Aug 22 (vol. 13, p. 13).

    Google Scholar 

  108. https://www.cms.gov/Medicare/Coding/MedHCPCSGenInfo/HCPCS_Coding_Questions.html

  109. https://www.cms.gov/Outreach-and-Education/Medicare-Learning-Network-MLN/MLNProducts/downloads/medcrephysfeeschedfctsht.pdf

  110. https://www.cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-Instruments/Value-Based-Programs/MACRA-MIPS-and-APMs/MIPS-Scoring-Methodology-slide-deck.pdf

  111. ACR Data Science Institute Data Science Summit. https://www.acrdsi.org/dsisummit2018

  112. NVIDIA GTC. https://www.nvidia.com/en-us/gtc/

  113. https://www.acrdsi.org/Resources/Recommended-Reading

  114. ACR TRIAD. https://triadhelp.acr.org

  115. ACR DART. https://dart.acr.org

  116. MQSA public Law. PL 102-539.

    Google Scholar 

  117. FDA and Registries. https://www.accessdata.fda. gov/scripts/cdrh/cfdocs/cfPMA/pma_pas.cfm? t_id=439786%26;c_id=380

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Allen, B., Gish, R., Dreyer, K. (2019). The Role of an Artificial Intelligence Ecosystem in Radiology. In: Ranschaert, E., Morozov, S., Algra, P. (eds) Artificial Intelligence in Medical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-94878-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94878-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94877-5

  • Online ISBN: 978-3-319-94878-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics