Skip to main content

Deep Learning in Breast Cancer Screening

  • Chapter
  • First Online:
Artificial Intelligence in Medical Imaging

Abstract

Traditional computer aided detection (CAD) systems for breast cancer screening relied on machine learning with human-coded feature-engineering. They have largely failed to fulfill the promise of improving screening accuracy and workflow efficiency, and are often associated with increased recall rates and avoidable screening costs due to high instances of false positive markings. Advances in machine learning (such as deep learning) are on the cusp of providing more effective, more efficient, and even more patient-centric breast cancer screening support than ever before. By leveraging the consistent high sensitivity and specificity performance of autonomous systems, in combination with expert human oversight, the potential for efficient single-reader software-supported screening programs with low recall rates is on the horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JWW, Comber H, Forman D, Bray F. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374–1403.

    Article  CAS  PubMed  Google Scholar 

  2. Tabár L, Gad A, Holmberg LH, Ljungquist U, Fagerberg CJG, Baldetorp L, Gröntoft O, Lundström B, Månson JC, Eklund G, Day NE, Pettersson F. Reduction in mortality from breast cancer after mass screening with mammography: randomised trial from the breast cancer screening working group of the Swedish National Board of Health and Welfare. Lancet. 1985;325(8433):829–32.

    Article  Google Scholar 

  3. Lee CH, David Dershaw D, Kopans D, Evans P, Monsees B, Monticciolo D, James Brenner R, Bassett L, Berg W, Feig S, Hendrick E, Mendelson E, D’Orsi C, Sickles E, Burhenne LW. Breast cancer screening with imaging: recommendations from the society of breast imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer. J Am Coll Radiol. 2010;7(1):18–27.

    Article  PubMed  Google Scholar 

  4. Boyer B, Balleyguier C, Granat O, Pharaboz C. CAD in questions/answers: review of the literature. Eur J Radiol. 2009;69(1):24–33.

    Article  PubMed  Google Scholar 

  5. Duijm LEM, Louwman MWJ, Groenewoud JH, Van De Poll-Franse LV, Fracheboud J, Coebergh JW. Inter-observer variability in mammography screening and effect of type and number of readers on screening outcome. Br J Cancer. 2009;100(6): 901–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dinitto P, Logan-young W, Bonaccio E, Zuley ML, Willison KM. Breast imaging can computer-aided detection with double reading of screening mammograms help decrease the false-negative rate? Initial experience 1. Radiology. 2004;232(2):578–84.

    Article  PubMed  Google Scholar 

  7. Beam CA, Sullivan DC, Layde PM. Effect of human variability on independent double reading in screening mammography. Acad Radiol. 1996;3(11): 891–7.

    Article  CAS  PubMed  Google Scholar 

  8. Tice JA, Kerlikowske K. Screening and prevention of breast cancer in primary care. Prim Care. 2009;36(3):533–58.

    Article  PubMed  Google Scholar 

  9. Fletcher SW. Breast cancer screening: a 35-year perspective. Epidemiol Rev. 2011;33(1):165–75.

    Article  PubMed  Google Scholar 

  10. Hofvind S, Geller BM, Skelly J, Vacek PM. Sensitivity and specificity of mammographic screening as practised in Vermont and Norway. Br J Radiol. 2012;85(1020):e1226–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Domingo L, Hofvind S, Hubbard RA, Román M, Benkeser D, Sala M, Castells X. Cross-national comparison of screening mammography accuracy measures in U.S., Norway, and Spain. Eur Radiol. 2016;26(8):2520–8.

    Article  PubMed  Google Scholar 

  12. Langreth R. Too many mammograms. Forbes; 2009.

    Google Scholar 

  13. Taylor P, Champness J, Given-Wilson R, Johnston K, Potts H. Impact of computer-aided detection prompts on the sensitivity and specificity of screening mammography. Health Technol Assess. 2005;9(6):iii, 1–58.

    Article  CAS  PubMed  Google Scholar 

  14. Philpotts LE. Can computer-aided detection be detrimental to mammographic interpretation? Radiology. 2009;253(1):17–22.

    Article  PubMed  Google Scholar 

  15. Gilbert FJ, Astley SM, Gillan MGC, Agbaje OF, Wallis MG, James J, Boggis CRM, Duffy SW. Single reading with computer-aided detection for screening mammography. N Engl J Med. 2008;359(16):1675–84.

    Article  CAS  PubMed  Google Scholar 

  16. Gilbert FJ, Astley SM, Gillan MG, Agbaje OF, Wallis MG, James J, Boggis CR, Duffy SW. CADET II: a prospective trial of computer-aided detection (CAD) in the UK Breast Screening Programme. J Clin Oncol. 2008;26(15 suppl):508.

    Article  Google Scholar 

  17. Taylor P, Potts HWW. Computer aids and human second reading as interventions in screening mammography: two systematic reviews to compare effects on cancer detection and recall rate. Eur J Cancer. 2008;44(6):798–807.

    Article  PubMed  Google Scholar 

  18. Noble M, Bruening W, Uhl S, Schoelles K. Computer-aided detection mammography for breast cancer screening: systematic review and meta-analysis. Arch Gynecol Obstet. 2009;279(6):881–90.

    Article  PubMed  Google Scholar 

  19. Karssemeijer N, Bluekens AM, Beijerinck D, Deurenberg JJ, Beekman M, Visser R, van Engen R, Bartels-Kortland A, Broeders MJ. Breast cancer screening results 5 years after introduction of digital mammography in a population-based screening program. Radiology. 2009;253(2):353–8.

    Article  PubMed  Google Scholar 

  20. Destounis S, Hanson S, Morgan R, Murphy P, Somerville P, Seifert P, Andolina V, Arieno A, Skolny M, Logan-Young W. Computer-aided detection of breast carcinoma in standard mammographic projections with digital mammography. Int J Comput Assist Radiol Surg. 2009;4(4):331–6.

    Article  PubMed  Google Scholar 

  21. van den Biggelaar FJHM, Kessels AGH, Van Engelshoven JMA, Flobbe K. Strategies for digital mammography interpretation in a clinical patient population. Int J Cancer. 2009;125(12):2923–9.

    Article  PubMed  CAS  Google Scholar 

  22. Sohns C, Angic B, Sossalla S, Konietschke F, Obenauer S. Computer-assisted diagnosis in full-field digital mammography-results in dependence of readers experiences. Breast J. 2010;16(5):490–7.

    Article  PubMed  Google Scholar 

  23. Murakami R, Kumita S, Tani H, Yoshida T, Sugizaki K, Kuwako T, Kiriyama T, Hakozaki K, Okazaki E, Yanagihara K, Iida S, Haga S, Tsuchiya S. Detection of breast cancer with a computer-aided detection applied to full-field digital mammography. J Digit Imaging. 2013;26(4):768–73.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cole EB, Zhang Z, Marques HS, Edward Hendrick R, Yaffe MJ, Pisano ED. Impact of computer-aided detection systems on radiologist accuracy with digital mammography. Am J Roentgenol. 2014;203(4):909–16.

    Article  Google Scholar 

  25. Bargalló X, Santamaría G, Del Amo M, Arguis P, Ríos J, Grau J, Burrel M, Cores E, Velasco M. Single reading with computer-aided detection performed by selected radiologists in a breast cancer screening program. Eur J Radiol. 2014;83(11):2019–23.

    Article  PubMed  Google Scholar 

  26. Lehman CD, Wellman RD, Buist DSM, Kerlikowske K, Tosteson ANA, Miglioretti DL. Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Intern Med. 2015;175(11):1828.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Berry DA. Computer-assisted detection and screening mammography: where’s the beef? J Natl Cancer Inst. 2011;103(15):1139–41.

    Article  PubMed  Google Scholar 

  28. Sanchez Gómez S, Torres Tabanera M, Vega Bolivar A, Sainz Miranda M, Baroja Mazo A, Ruiz Diaz M, Martinez Miravete P, Lag Asturiano E, Muñoz Cacho P, Delgado Macias T. Impact of a CAD system in a screen-film mammography screening program: a prospective study. Eur J Radiol. 2011;80(3):e317–21.

    Article  PubMed  Google Scholar 

  29. Freer TW, Ulissey MJ. Screening mammography with computer-aided detection: prospective study of 12,860 patients in a community breast center. Radiology. 2001;220(3):781–6.

    Article  CAS  PubMed  Google Scholar 

  30. The JS, Schilling KJ, Hoffmeister JW, Friedmann E, McGinnis R, Holcomb RG. Detection of breast cancer with full-field digital mammography and computer-aided detection. Am J Roentgenol. 2009;192(2):337–40.

    Article  Google Scholar 

  31. Rao VM, Levin DC, Parker L, Cavanaugh B, Frangos AJ, Sunshine JH. How widely is computer-aided detection used in screening and diagnostic mammography? J Am Coll Radiol. 2010;7(10):802–5.

    Article  PubMed  Google Scholar 

  32. Onega T, Aiello Bowles EJ, Miglioretti DL, Carney PA, Geller BM, Yankaskas BC, Kerlikowske K, Sickles EA, Elmore JG. Radiologists’ perceptions of computer aided detection versus double reading for mammography interpretation. Acad Radiol. 2010;17(10):1217–26.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kohli A, Jha S. Why CAD failed in mammography. J Am Coll Radiol. 2018;15(3 Pt B):535–7.

    Article  PubMed  Google Scholar 

  34. Lehman CD, Arao RF, Sprague BL, Lee JM, Buist DSM, Kerlikowske K, Henderson LM, Onega T, Tosteson ANA, Rauscher GH, Miglioretti DL. National performance benchmarks for modern screening digital mammography: update from the breast cancer surveillance consortium. Radiology. 2017;283(1):49–58.

    Article  PubMed  Google Scholar 

  35. Carney PA, Sickles EA, Monsees BS, Bassett LW, James Brenner R, Feig SA, Smith RA, Rosenberg RD, Andrew Bogart T, Browning S, Barry JW, Kelly MM, Tran KA, Miglioretti DL. Identifying minimally acceptable interpretive performance criteria for screening mammography. Radiology. 2010;255(2):354–61.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Miglioretti DL, Ichikawa L, Smith RA, Bassett LW, Feig SA, Monsees B, Parikh JR, Rosenberg RD, Sickles EA, Carney PA. Criteria for identifying radiologists with acceptable screening mammography interpretive performance on basis of multiple performance measures. Am J Roentgenol. 2015;204(4):W486–91.

    Article  Google Scholar 

  37. Myers ER, Moorman P, Gierisch JM, Havrilesky LJ, Grimm LJ, Ghate S, Davidson B, Mongtomery RC, Crowley MJ, McCrory DC, Kendrick A, Sanders GD. Benefits and harms of breast cancer screening: a systematic review. J Am Med Assoc. 2015;314:1615–34.

    Article  CAS  Google Scholar 

  38. Sahiner B, Chan HP, Petrick N, Wei D, Helvie MA, Adler DD, Goodsitt MM. Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images. IEEE Trans Med Imaging. 1996;15(5):598–610.

    Article  CAS  PubMed  Google Scholar 

  39. Dhungel N, Carneiro G, Bradley AP. Automated mass detection from mammograms using deep learning and random forest. In: International conference on digital image computing: techniques and applications; 2015. p. 1–8.

    Google Scholar 

  40. Ertosun MG, Rubin DL. Probabilistic visual search for masses within mammography images using deep learning. In: IEEE international conference on bioinformatics and biomedicine; 2015. p. 1310–5.

    Google Scholar 

  41. Carneiro G, Nascimento J, Bradley AP. Unregistered multiview mammogram analysis with pre-trained deep learning models. In: Proceedings of the 18th international conference on medical image computing and computer-assisted intervention. Lecture notes in computer science. Vol 9351. Cham: Springer; 2015. p. 652–60.

    Google Scholar 

  42. Moreira IC, Amaral I, Domingues I, Cardoso A, Cardoso MJ, Cardoso JS. INbreast: toward a full-field digital mammographic database. Acad Radiol. 2012;19(2):236–48.

    Article  PubMed  Google Scholar 

  43. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior F. The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imaging. 2013;26(6):1045–57.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kooi T, Litjens G, van Ginneken B, Gubern-Mérida A, Sánchez CI, Mann R, den Heeten A, Karssemeijer N. Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal. 2017;35:303–12.

    Article  PubMed  Google Scholar 

  45. Teare P, Fishman M, Benzaquen O, Toledano E, Elnekave E. Malignancy detection on mammography using dual deep convolutional neural networks and genetically discovered false color input enhancement. J Digit Imaging. 2017;30(4): 499–505.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kim E-K, Kim H-E, Han K, Kang BJ, Sohn Y-M, Woo OH, Lee CW. Applying data-driven imaging biomarker in mammography for breast cancer screening: preliminary study. Sci Rep. 2018;8(1):2762.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Elter M, Horsch A. CADx of mammographic masses and clustered microcalcifications: a review. Med Phys. 2009;36(6):2052–68.

    Article  PubMed  Google Scholar 

  48. Breast screening: consolidated programme standards - GOV.UK; 2017.

    Google Scholar 

  49. Rothschild J, Lourenco AP, Mainiero MB. Screening mammography recall rate: does practice site matter? Radiology. 2013;269(2):348–53.

    Article  PubMed  Google Scholar 

  50. Sage Bionetworks. The Digital Mammography DREAM Challenge; 2016.

    Google Scholar 

  51. Ribli D, Horváth A, Unger Z, Pollner P, Csabai I. Detecting and classifying lesions in mammograms with deep learning. Sci Rep. 2018;8(1):4165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Dhungel N, Carneiro G, Bradley AP. The automated learning of deep features for breast mass classification from mammograms. In: International conference on medical image computing and computer-assisted intervention. Cham: Springer; 2016. p. 106–14.

    Google Scholar 

  53. Arevalo J, Gonzalez FA, Ramos-Pollan R, Oliveira JL, Lopez MAG. Convolutional neural networks for mammography mass lesion classification. In: IEEE Engineering in Medicine and Biology Society (EMBC). Washington: IEEE; 2015. p. 797–800.

    Google Scholar 

  54. Lévy D, Jain A. Breast mass classification from mammograms using deep convolutional neural networks; 2016. arxiv:1612.00542.

    Google Scholar 

  55. Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell. 2018;40(4):834–48.

    Article  PubMed  Google Scholar 

  56. Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks; 2016. arxiv:1506.01497.

    Google Scholar 

  57. Li Y, He K, Sun J. R-fcn: object detection via region-based fully convolutional networks. In: Advances in neural information processing systems; 2016.

    Google Scholar 

  58. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg AC. SSD: single shot multibox detector; 2016. arxiv:1512.02325.

    Google Scholar 

  59. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention – MICCAI 2015; 2015. p. 234–41.

    Google Scholar 

  60. Zhu W, Xiang X, Tran TD, Xie X. Adversarial deep structural networks for mammographic mass segmentation; 2017. arxiv:1612.05970.

    Google Scholar 

  61. de Moor T, Rodriguez-Ruiz A, Mérida AG, Mann R, Teuwen J. Automated soft tissue lesion detection and segmentation in digital mammography using a u-net deep learning network; 2018. arxiv:1802.06865.

    Google Scholar 

  62. Uijlings JRR, van de Sande KEA, Gevers T, Smeulders AWM. Selective search for object recognition. Int J Comput Vis. 2013;104(2):154–71.

    Article  Google Scholar 

  63. He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN; 2017. arxiv:1703.06870.

    Google Scholar 

  64. Assi V, Warwick J, Cuzick J, Duffy SW. Clinical and epidemiological issues in mammographic density. Nat Rev Clin Oncol. 2012;9(1):33–40.

    Article  CAS  Google Scholar 

  65. Colin C, Schott-Pethelaz A-M. Mammographic density as a risk factor: to go out of a 30-year fog. Acta Radiol. 2017;58(6):NP1.

    Article  PubMed  Google Scholar 

  66. Colin C. Mammographic density: is there a public health significance linked to published relative risk data? Radiology. 2017;284(3):918–9.

    Article  PubMed  Google Scholar 

  67. Martin LJ, Melnichouk O, Guo H, Chiarelli AM, Hislop TG, Yaffe MJ, Minkin S, Hopper JL, Boyd NF. Family history, mammographic density, and risk of breast cancer. Cancer Epidemiol Biomarkers Prev. 2010;19(2):456–63.

    Article  PubMed  Google Scholar 

  68. Shepherd JA, Kerlikowske K, Ma L, Duewer F, Fan B, Wang J, Malkov S, Vittinghoff E, Cummings SR. Volume of mammographic density and risk of breast cancer. Cancer Epidemiol Biomarkers Prev. 2011;20(7):1473–82.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Boyd N, Martin L, Gunasekara A, Melnichouk O, Maudsley G, Peressotti C, Yaffe M, Minkin S. Mammographic density and breast cancer risk: evaluation of a novel method of measuring breast tissue volumes. Cancer Epidemiol Biomarkers Prev. 2009;18(6):1754–62.

    Article  PubMed  Google Scholar 

  70. Aitken Z, McCormack VA, Highnam RP, Martin L, Gunasekara A, Melnichouk O, Mawdsley G, Peressotti C, Yaffe M, Boyd NF, dos Santos Silva I. Screen-film mammographic density and breast cancer risk: a comparison of the volumetric standard mammogram form and the interactive threshold measurement methods. Cancer Epidemiol Biomarkers Prev. 2010;19(2):418–28.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gastounioti A, Conant EF, Kontos D. Beyond breast density: a review on the advancing role of parenchymal texture analysis in breast cancer risk assessment. Breast Cancer Res. 2016;18(1):91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Astley SM, Harkness EF, Sergeant JC, Warwick J, Stavrinos P, Warren R, Wilson M, Beetles U, Gadde S, Lim Y, Jain A, Bundred S, Barr N, Reece V, Brentnall AR, Cuzick J, Howell T, Evans DG. A comparison of five methods of measuring mammographic density: a case-control study. Breast Cancer Res. 2018;20(1):10.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Manduca A, Carston MJ, Heine JJ, Scott CG, Pankratz VS, Brandt KR, Sellers TA, Vachon CM, Cerhan JR. Texture features from mammographic images and risk of breast cancer. Cancer Epidemiol Biomarkers Prev. 2009;18(3):837–45.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Li J, Szekely L, Eriksson L, Heddson B, Sundbom A, Czene K, Hall P, Humphreys K. High-throughput mammographic-density measurement: a tool for risk prediction of breast cancer. Breast Cancer Res. 2012;14(4):R114.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Häberle L, Wagner F, Fasching PA, Jud SM, Heusinger K, Loehberg CR, Hein A, Bayer CM, Hack CC, Lux MP, Binder K, Elter M, Münzenmayer C, Schulz-Wendtland R, Meier-Meitinger M, Adamietz BR, Uder M, Beckmann MW, Wittenberg T. Characterizing mammographic images by using generic texture features. Breast Cancer Res. 2012;14(2):R59.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bott R. ACR BI-RADS atlas. In: Igarss 2014; 2014.

    Google Scholar 

  77. Gram IT, Funkhouser E, Tabár L. The Tabar classification of mammographic parenchymal patterns. Eur J Radiol. 1997;24:131–6.

    Article  CAS  PubMed  Google Scholar 

  78. Petersen K, Nielsen M, Diao P, Karssemeijer N, Lillholm M. Breast tissue segmentation and mammographic risk scoring using deep learning. In: International workshop on breast imaging. Lecture notes in computer science. Vol 8539. Cham: Springer; 2014. p. 88–94.

    Google Scholar 

  79. Wu N, Geras KJ, Shen Y, Su J, Gene Kim S, Kim E, Wolfson S, Moy L, Cho K. Breast density classification with deep convolutional neural networks; 2017. arxiv:1711.03674.

    Google Scholar 

  80. Shin SY, Lee S, Yun ID, Jung HY, Heo YS, Kim SM, Lee SM. A novel cascade classifier for automatic microcalcification detection. Public Libr Sci. 2015;10(12):e0143725.

    Google Scholar 

  81. Chen T, Xu B, Zhang C, Guestrin C. Training deep nets with sublinear memory cost; 2016. arxiv:1604.06174.

    Google Scholar 

  82. Gomez AN, Ren M, Urtasun R, Grosse RB. The reversible residual network: backpropagation without storing activations; 2017. arxiv:1707.04585.

    Google Scholar 

  83. Lee RS, Gimenez F, Hoogi A, Miyake KK, Gorovoy M, Rubin DL. Data descriptor: a curated mammography data set for use in computer-aided detection and diagnosis research. Sci Data. 2017;4:170177.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Xi P, Shu C, Goubran R. Abnormality detection in mammography using deep convolutional neural networks; 2018. arxiv:1803.01906.

    Google Scholar 

  85. Chawla N, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321–57.

    Article  Google Scholar 

  86. Keller BM, Nathan DL, Gavenonis SC, Chen J, Conant EF, Kontos D. Reader variability in breast density estimation from full-field digital mammograms: the effect of image postprocessing on relative and absolute measures. Acad Radiol. 2013;20(5):560–8.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Redondo A, Comas M, Macià F, Ferrer F, Murta-Nascimento C, Maristany MT, Molins E, Sala M, Castells X. Inter- and intraradiologist variability in the BI-RADS assessment and breast density categories for screening mammograms. Br J Radiol. 2012;85(1019):1465–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lee AY, Wisner DJ, Aminololama-Shakeri S, Arasu VA, Feig SA, Hargreaves J, Ojeda-Fournier H, Bassett LW, Wells CJ, De Guzman J, Flowers CI, Campbell JE, Elson SL, Retallack H, Joe BN. Inter-reader variability in the use of BI-RADS descriptors for suspicious findings on diagnostic mammography: a multi-institution study of 10 academic radiologists. Acad Radiol. 2017;24(1):60–6.

    Article  PubMed  Google Scholar 

  89. Heath M, Bowyer K, Kopans D, Kegelmeyer P, Moore R, Chang K, Munishkumaran S. Current status of the digital database for screening mammography. In: Digital mammography. Dordrecht: Springer; 1998. p. 457–60.

    Chapter  Google Scholar 

  90. Gal Y, Ghahramani Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning; 2015. arxiv:1506.02142.

    Google Scholar 

  91. Kendall A, Gal Y. What uncertainties do we need in Bayesian deep learning for computer vision?; 2017. arxiv:1703.04977.

    Google Scholar 

  92. Guo C, Pleiss G, Sun Y, Weinberger KQ. On calibration of modern neural networks; 2017. arxiv:1706.04599.

    Google Scholar 

  93. Cobb AD, Roberts SJ, Gal Y. Loss-calibrated approximate inference in Bayesian neural networks; 2018. arxiv:1805.03901.

    Google Scholar 

  94. Nishikawa RM, Bae KT. Importance of better human-computer interaction in the era of deep learning: mammography computer-aided diagnosis as a use case. J Am Coll Radiol. 2018;15(1): 49–52.

    Article  PubMed  Google Scholar 

  95. Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks: visualising image classification models and saliency maps; 2013. arxiv:1312.6034.

    Google Scholar 

  96. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. In: Advances in neural information processing systems; 2014. p. 2672–80.

    Google Scholar 

  97. Kingma DP, Welling M. Auto-encoding variational Bayes. In: International conference on learning representations; 2014.

    Google Scholar 

  98. van den Oord A, Kalchbrenner N, Kavukcuoglu K. Pixel recurrent neural networks. In: International conference on machine learning. Vol 48; 2016. p. 1747–56.

    Google Scholar 

  99. Salehinejad H, Valaee S, Dowdell T, Colak E, Barfett J. Generalization of deep neural networks for chest pathology classification in X-rays using generative adversarial networks. In: IEEE international conference on acoustics, speech and signal processing (ICASSP); 2018.

    Google Scholar 

  100. Costa P, Galdran A, Meyer MI, Niemeijer M, Abramoff M, Mendonca AM, Campilho A. End-to-end adversarial retinal image synthesis. IEEE Trans Med Imaging. 2018;37(3):781–91.

    Article  PubMed  Google Scholar 

  101. Korkinof D, Rijken T, O’Neill M, Yearsley J, Harvey H, Glocker B. High-resolution mammogram synthesis using progressive generative adversarial networks; 2018. arxiv:1807.03401.

    Google Scholar 

  102. Adiwardana D, et al. Using generative models for semi-supervised learning. In: Medical image computing and computer-assisted intervention – MICCAI 2016; 2016. p. 106–14.

    Google Scholar 

  103. Lahiri A, Ayush K, Biswas PK, Mitra P. Generative adversarial learning for reducing manual annotation in semantic segmentation on large scale microscopy images: automated vessel segmentation in retinal fundus image as test case. In: IEEE Computer Society conference on computer vision and pattern recognition workshops, July 2017; 2017. p. 794–800.

    Google Scholar 

  104. Kamnitsas K, Baumgartner C, Ledig C, Newcombe V, Simpson J, Kane A, Menon D, Nori A, Criminisi A, Rueckert D, Glocker B. Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). Lecture notes in computer science. Vol 10265. Cham: Springer; 2017. p. 597–609.

    Google Scholar 

  105. Wolterink JM, Leiner T, Viergever MA, Isgum I. Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging. 2017;36(12):2536–45.

    Article  PubMed  Google Scholar 

  106. Gennaro G, Bernardi D, Houssami N. Radiation dose with digital breast tomosynthesis compared to digital mammography: per-view analysis. Eur Radiol. 2018;28(2):573–81.

    Article  PubMed  Google Scholar 

  107. Vedantham S, Karellas A, Vijayaraghavan GR, Kopans DB. Digital breast tomosynthesis: state of the art. Radiology. 2015;277(3):663–84.

    Article  PubMed  Google Scholar 

  108. Gilbert FJ, Tucker L, Gillan MGC, Willsher P, Cooke J, Duncan KA, Michell MJ, Dobson HM, Lim YY, Suaris T, Astley SM, Morrish O, Young KC, Duffy SW. Accuracy of digital breast tomosynthesis for depicting breast cancer subgroups in a UK retrospective reading study (TOMMY trial). Radiology. 2015;277(3):697–706.

    Article  PubMed  Google Scholar 

  109. Connor SJ, Lim YY, Tate C, Entwistle H, Morris J, Whiteside S, Sergeant J, Wilson M, Beetles U, Boggis C, Gilbert F, Astley S. A comparison of reading times in full-field digital mammography and digital breast tomosynthesis. Breast Cancer Res. 2012;14(S1):P26.

    Article  Google Scholar 

  110. Chan HP, Wei J, Zhang Y, Helvie MA, Moore RH, Sahiner B, Hadjiiski L, Kopans DB. Computer-aided detection of masses in digital tomosynthesis mammography: comparison of three approaches. Med Phys. 2008;35(9):4087–95.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Sahiner B, Chan HP, Hadjiiski LM, Helvie MA, Wei J, Zhou C, Lu Y. Computer-aided detection of clustered microcalcifications in digital breast tomosynthesis: a 3D approach. Med Phys. 2011;39(1):28–39.

    Article  PubMed Central  Google Scholar 

  112. Samala RK, Chan HP, Lu Y, Hadjiiski L, Wei J, Sahiner B, Helvie MA. Computer-aided detection of clustered microcalcifications in multiscale bilateral filtering regularized reconstructed digital breast tomosynthesis volume. Med Phys. 2014;41(2):021901.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Morra L, Sacchetto D, Durando M, Agliozzo S, Carbonaro LA, Delsanto S, Pesce B, Persano D, Mariscotti G, Marra V, Fonio P, Bert A. Breast cancer: computer-aided detection with digital breast tomosynthesis. Radiology. 2015;277(1): 56–63.

    Article  PubMed  Google Scholar 

  114. Killelea BK, Chagpar AB, Bishop J, Horowitz NR, Christy C, Tsangaris T, Raghu M, Lannin DR. Is there a correlation between breast cancer molecular subtype using receptors as surrogates and mammographic appearance? Ann Surg Oncol. 2013;20(10):3247–53.

    Article  PubMed  Google Scholar 

  115. Nguyen NG, Tran VA, Ngo DL, Phan D, Lumbanraja FR, Faisal MR, Abapihi B, Kubo M, Satou K. DNA sequence classification by convolutional neural network. J Biomed Sci Eng. 2016;9(9):280–6.

    Article  CAS  Google Scholar 

  116. Yin B, Balvert M, Zambrano D, Sander M, Wiskunde C. An image representation based convolutional network for DNA classification; 2018. arxiv:1806.04931.

    Google Scholar 

  117. Rutman AM, Kuo MD. Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur J Radiol. 2009;70(2):232–41.

    Article  PubMed  Google Scholar 

  118. Grimm LJ. Breast MRI radiogenomics: current status and research implications. J Magn Reson Imaging. 2016;43(6):1269–78.

    Article  PubMed  Google Scholar 

  119. Incoronato M, Aiello M, Infante T, Cavaliere C, Grimaldi AM, Mirabelli P, Monti S, Salvatore M. Radiogenomic analysis of oncological data: a technical survey. Int J Mol Sci. 2017;18(4):pii: E805.

    Google Scholar 

  120. Perry N. European guidelines for quality assurance in breast cancer screening and diagnosis. Ann Oncol. 2006;12(4):295–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh Harvey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harvey, H. et al. (2019). Deep Learning in Breast Cancer Screening. In: Ranschaert, E., Morozov, S., Algra, P. (eds) Artificial Intelligence in Medical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-94878-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94878-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94877-5

  • Online ISBN: 978-3-319-94878-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics