Thermal Melt Processing of Metallic Alloys

  • Ulf Dahlborg
  • Monique Calvo-DahlborgEmail author
  • Dmitry G. Eskin
  • Piotr S. Popel
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 273)


Using melt superheating as a means to control the structure and properties of metallic alloys has been studied extensively and demonstrated some promising results, though the industrial implementation is limited due to the required high energy for melt heating and holding. The physical mechanisms behind this technology can be divided into two major groups: (1) achieving homogeneous metallic melt with the resultant high undercooling upon solidification and (2) formation of heterogeneous substrates either by formation or transformation of insoluble impurities. In this chapter, we first discuss the structure of melts and its changes with temperature during high-temperature holding. Although mostly of academic interest, these studies demonstrate the complexity of temperature influence on the molten and solidifying melt. Some examples on the effects of the initial melt condition on the solidification microstructures are given as well. After that we consider some practical implications of the changes in insoluble impurities with temperature on the microstructure formed during solidification in some metallic alloys.


  1. 1.
    P.S. Popel, Chernaja Metallurgija 5, 34–41 (1985)Google Scholar
  2. 2.
    P.S. Popel, E.L. Demina, E.L. Arkhangel’skii, B.A. Baum, TVT 25(3), 487–491 (1987); High Temp. 25(3), 360–364 (1987)Google Scholar
  3. 3.
    V.P. Manov, A.B. Manukhin, P.S. Popel, Doklady AN SSSR 281, 107–109 (1985)Google Scholar
  4. 4.
    P.S. Popel, O.A. Chikova, V.M. Matveev, High Temp. Mater. Process. 4, 219–233 (1995)Google Scholar
  5. 5.
    I.G. Brodova, P.S. Popel, G.I. Eskin, Liquid Metal Processing. Application to Aluminium Alloy Production (Taylor and Francis, New York, 2002)Google Scholar
  6. 6.
    V. Manov, P.S. Popel, E. Brook-Levinson, V. Molokanov, M. Calvo-Dahlborg, U. Dahlborg, V. Sidorov, L. Son, Y. Tarakanov, Mater. Sci. Eng. A 304–306, 54–60 (2001)CrossRefGoogle Scholar
  7. 7.
    P.S. Popel, M. Calvo-Dahlborg, U. Dahlborg, J. Non-Cryst. Solids 353, 3243–3253 (2007)CrossRefGoogle Scholar
  8. 8.
    J.R. Morris, U. Dahlborg, M. Calvo-Dahlborg, J. Non-Cryst. Solids 353, 3444–3453 (2007)CrossRefGoogle Scholar
  9. 9.
    H. Tanaka, Eur. Phys. J. E 35, 113 (2012)CrossRefGoogle Scholar
  10. 10.
    L. Son, J. Non-Cryst. Solids 401, 213–218 (2014)CrossRefGoogle Scholar
  11. 11.
    L. Son, Physica A 449, 395–400 (2016)CrossRefGoogle Scholar
  12. 12.
    F.-Q. Zu, Metals 5, 395–417 (2015)CrossRefGoogle Scholar
  13. 13.
    P.-F. Paradis, T. Ishikawa, G.-W. Lee, D. Holland-Moritz, J. Brillo, W.-K. Rhim, J.T. Okada, Mater. Sci. Eng. R 76, 1–53 (2014)CrossRefGoogle Scholar
  14. 14.
    A. Guinier, G. Fournet, Small-Angle Scattering of X-rays (Chapman & Hall. Ltd, London, 1955)Google Scholar
  15. 15.
    G. Kostorz, Physical Metallurgy, vol II, 5th edn. (Elsevier, Amsterdam, 2004), pp. 1227–1316Google Scholar
  16. 16.
    Y. Waseda, The Structure of Non-Crystalline Materials (McGraw-Hill, New York, 1980)Google Scholar
  17. 17.
    I. Kaban, S. Gruner, W. Hoyer, P. Jóvári, R.G. Delaplane, A. Wannberg, J. Non-Cryst. Solids 353, 3027–3031 (2007)CrossRefGoogle Scholar
  18. 18.
    U. Dahlborg, M. Calvo-Dahlborg, P.S. Popel, V.E. Sidorov, Eur. Phys. J. B. 14, 639–648 (2000)CrossRefGoogle Scholar
  19. 19.
    M. Calvo-Dahlborg, P.S. Popel, M.J. Kramer, M. Besser, J.R. Morris, U. Dahlborg, J. Alloys Compd. 550, 9–22 (2013)CrossRefGoogle Scholar
  20. 20.
    F.-G. Li, J. Zhang, Y.-B. Dai, F.-G. Bian, Y.-F. Han, B.-D. Sun, Mater. Chem. Phys. 143, 471–475 (2014)CrossRefGoogle Scholar
  21. 21.
    R.L. McGreevy, L. Pusztai, Mol. Simul. 1, 359–367 (1988)CrossRefGoogle Scholar
  22. 22.
    R.L. McGreevy, J. Phys, Condens. Matter 13, R877 (2001)CrossRefGoogle Scholar
  23. 23.
    J. Brillo, A. Bytchkov, I. Egry, L. Hennet, G. Mathiak, I. Pozdnyakova, D.L. Price, D. Thiaudiere, D. Zanghi, J. Non-Cryst. Solids 352, 4008–4012 (2006)CrossRefGoogle Scholar
  24. 24.
    G.J. Cuello, R. Fernández-Perea, F.J. Bermejo, G. Román-Ross, J. Campo, J. Non-Cryst. Solids 353, 2987–2992 (2007)CrossRefGoogle Scholar
  25. 25.
    U. Dahlborg, M.J. Kramer, M. Besser, J.R. Morris, M. Calvo-Dahlborg, J. Non-Cryst. Solids 361, 63–69 (2013)CrossRefGoogle Scholar
  26. 26.
    O.S. Roik, O.M. Yakovenko, V.P. Kazimirov, O.O. Bilovodska, N.V. Golovataya, V.E. Sokol’skii, J. Mol. Liq. 220, 155–160 (2016)CrossRefGoogle Scholar
  27. 27.
    U. Dahlborg, M. Besser, M.J. Kramer, J.R. Morris, M. Calvo-Dahlborg, Physica B 412, 50–60 (2013)CrossRefGoogle Scholar
  28. 28.
    S.Y. Wang, M.J. Kramer, M. Xu, S. Wu, S.G. Hao, D.J. Sordelet, K.M. Ho, C.Z. Wang, Phys. Rev. B 79, 144205 (2009)CrossRefGoogle Scholar
  29. 29.
    A.K. Gangopadhyay, M.E. Blodgett, M.L. Johnson, J. McKnight, V. Wessels, A.J. Vogt, N.A. Mauro, J.C. Bendert, R. Soklaski, L. Yang, K.F. Kelton, J. Chem. Phys. 140, 044505 (2014)CrossRefGoogle Scholar
  30. 30.
    H.B. Lou, X.D. Wang, Q.P. Cao, D.X. Zhang, J. Zhang, T.D. Hu, H.-K. Mao, J.-Z. Jiang, Proc. Natl. Acad. Sci. U. S. A. 110, 10068–10072 (2013)CrossRefGoogle Scholar
  31. 31.
    P. Srirangam, M.J. Kramer, S. Shankar, Acta Mater. 59, 503–513 (2011)CrossRefGoogle Scholar
  32. 32.
    S. Mudry, I. Shtablavyi, Chem. Met. Alloys 1, 163–167 (2008)Google Scholar
  33. 33.
    O.S. Roik, V.P. Kazimirov, V.E. Sokolskii, S.M. Galushko, J. Non-Cryst. Solids 364, 34–39 (2013)CrossRefGoogle Scholar
  34. 34.
    O.M. Yakovenko, O.S. Roik, V.P. Kazimirov, V.E. Sokol’skii, N.V. Golovataya, G.M. Zelinskaya, T.M. Mika, J. Non-Cryst. Solids 455, 75–82 (2017)CrossRefGoogle Scholar
  35. 35.
    O.S. Muratov, O.S. Roik, V.P. Kazimirov, N.V. Golovataya, V.K. Nosenko, G.M. Zelinskaya, T.M. Mika, V.E. Sokol’skii, J. Mol. Liq. 200, 213–222 (2014)CrossRefGoogle Scholar
  36. 36.
    O.S. Muratov, O.S. Roik, V.P. Kazimirov, V.K. Nosenko, G.M. Zelinskaya, J. Non-Cryst. Solids 401, 44–49 (2014)CrossRefGoogle Scholar
  37. 37.
    M. Shimoji, Liquid Metals: An Introduction to the Physics and Chemistry of Metals in the Liquid State (Academic Press, London, 1977)Google Scholar
  38. 38.
    T. Iida, R.I.L. Guthrie, The Physical Properties of Liquid Metals (Clarendon, Oxford, 1988)Google Scholar
  39. 39.
    I. Egry, Treatise on Process Metallurgy, vol I (Elsevier, Amsterdam, 2014), pp. 61–148CrossRefGoogle Scholar
  40. 40.
    W. Chen, L. Zhang, Y. Du, B. Huang, Phil. Mag. 94, 1552–1577 (2014)CrossRefGoogle Scholar
  41. 41.
    V.V. Makeev, E.L. Demina, P.S. Popel’, E.L. Arkhangel’skii, TVT 27(5), 889–895 (1989); High Temperature 27(5), 701–706 (1989)Google Scholar
  42. 42.
    J. Cheng, J. Grӧbner, N. Hort, K.U. Kainer, R. Schmid-Fetzer, Meas. Sci. Technol. 25, 062001 (2014)CrossRefGoogle Scholar
  43. 43.
    Y.Q. Wu, X.F. Bian, T. Mao, X.L. Li, T.B. Li, C.D. Wang, Phys. Let. A 361, 265–269 (2007)CrossRefGoogle Scholar
  44. 44.
    K. Khalouk, M. Mayoufi, J.G. Gasser, Phil. Mag. 90, 2695–2709 (2010)CrossRefGoogle Scholar
  45. 45.
    A.L. Bel’tyukov, S.G. Men’shikova, V.I. Lad’yanov, J. Non-Cryst, Solids 410, 1–6 (2015)Google Scholar
  46. 46.
    A.L. Bel’tyukov, S.G. Men’shikova, V.I. Lad’yanov, A.Y. Korepanov, High Temp. 54, 667–674 (2016)CrossRefGoogle Scholar
  47. 47.
    A.V. Borisenko, D.A. Yagodin, V.V. Filippov, P.S. Popel, A.G. Mozgovoj, Metally 8, 659–666 (2012)Google Scholar
  48. 48.
    X. Liu, J.F. Zhang, H.Y. Li, Q.C. Le, Z.Q. Zhang, W.Y. Hu, L. Bao, Ultrasonics 55, 6–9 (2015)CrossRefGoogle Scholar
  49. 49.
    V.I. Lad’yanov, S.G. Men’shikova, A.I. Bel’tyukov, B.B. Maslov, Bull. Russ. Acad. Sci. Phys. 74, 1176–1178 (2010)CrossRefGoogle Scholar
  50. 50.
    M.G. Vasin, S.G. Men’shikova, M.D. Ivshin, Physica A 449, 64–73 (2016)CrossRefGoogle Scholar
  51. 51.
    G.M. Sivkov, D.A. Yagodin, P.S. Popel, High Temp. 44, 535–541 (2006)CrossRefGoogle Scholar
  52. 52.
    J. Schmitz, B. Hallstedt, J. Brillo, I. Egry, M. Schick, J. Mater. Sci. 47, 3706–3712 (2012)CrossRefGoogle Scholar
  53. 53.
    N.Y. Konstantinova, A.R. Kurochkin, A.V. Borisenko, V.V. Filippov, P.S. Popel, Metally 2, 144–149 (2016)Google Scholar
  54. 54.
    M. Schick, J. Brillo, I. Egry, B. Hallstedt, J. Mater. Sci. 47, 8145–8152 (2012)CrossRefGoogle Scholar
  55. 55.
    A.R. Kurochkin, P.S. Popel, D.A. Yagodin, A.V. Borisenko, A.V. Okhapkin, High Temp. 51, 197–205 (2013)CrossRefGoogle Scholar
  56. 56.
    A.R. Kurochkin, P.S. Popel, A.V. Borisenko, D.A. Yagodin, High Temp.-High Press. 44, 265–283 (2015)Google Scholar
  57. 57.
    G.M. Sivkov, D.A. Yagodin, P.S. Popel, Rasplavy 3, 37–39 (2006)Google Scholar
  58. 58.
    G. Sivkov, D. Yagodin, S. Kofanov, O. Gornov, S. Volodin, V. Bykov, P. Popel, V. Sidorov, C. Bao, M. Calvo-Dahlborg, U. Dahlborg, D. Sordelet, J. Non-Cryst. Sol. 353, 3274–3278 (2007)CrossRefGoogle Scholar
  59. 59.
    F.-Q. Zu, J. Chen, X.-F. Li, L.-N. Mao, Y.-C. Liu, J. Mater. Res. 24, 2378–2384 (2008)CrossRefGoogle Scholar
  60. 60.
    S. Okavi, M. Emuna, Y. Greenberg, E. Yahel, G. Makov, J. Mol. Liq. 220, 788–794 (2016)CrossRefGoogle Scholar
  61. 61.
    Y. Plevachuk, V. Sklyarchuk, G. Gerbeth, S. Eckert, R. Novakovic, Surf. Sci. 605, 1034–1042 (2011)CrossRefGoogle Scholar
  62. 62.
    F.Q. Zu, Z.G. Zhu, L.J. Guo, B. Zhang, J.P. Shui, C.S. Liu, Phys. Rev. B 64, 180203R (2001)CrossRefGoogle Scholar
  63. 63.
    X.G. Song, X.F. Bian, J.X. Zhang, J. Zhang, J. Alloys Compd. 479, 670–673 (2009)CrossRefGoogle Scholar
  64. 64.
    T. Gancarz, Fluid Phase Equilib. 427, 97–103 (2016)CrossRefGoogle Scholar
  65. 65.
    S.A. Uporov, V.A. Bykov, D.A. Yagodin, J. Alloys Compd. 589, 420–424 (2014)CrossRefGoogle Scholar
  66. 66.
    A. Yakymovych, V. Vus, S. Mudry, J. Mol. Liq. 219, 845–850 (2016)CrossRefGoogle Scholar
  67. 67.
    A.L. Bel’tyukov, V.I. Lad’yanov, A.I. Shishmarin, S.G. Men’shikova, J. Non-Cryst. Solids 401, 245–249 (2014)CrossRefGoogle Scholar
  68. 68.
    Y.N. Taran, V.I. Mazur, Structure of Eutectic Alloys (Metallurgiya, Moscow, 1978)Google Scholar
  69. 69.
    V.I. Nikitin, K.V. Nikitin, Hereditey in Cast Alloys (Mashinostroyenie, Moscow, 2005)Google Scholar
  70. 70.
    W. Jie, Z. Chen, W. Reif, K. Müller, Metall. Mater. Trans. A 34A, 799–806 (2003)CrossRefGoogle Scholar
  71. 71.
    Q.Q. Sun, L.J. Liu, X.F. Li, F.Q. Zum, G.H. Ding, L.L. Guo, J. Chen, Z.Y. Huang, Mater. Sci. Technol. 25, 35–38 (2009)CrossRefGoogle Scholar
  72. 72.
    Y. Xi, F.Q. Zu, L.J. Liu, R.R. Shen, X.F. Li, Z.H. Chen, Kovove Mater. 43, 432–439 (2005)Google Scholar
  73. 73.
    G.G. Krushenko, V.I. Shpakov, Tekhnol. Legk. Spl. 4, 59–62 (1973)Google Scholar
  74. 74.
    D.G. Eskin, Tsvetn. Met. (5), 97–99 (1989)Google Scholar
  75. 75.
    D.G. Eskin, Z. Metallkde. 87, 295–299 (1996)Google Scholar
  76. 76.
    B.A. Baum, G.V. Tjagunov, P.S. Popel, G.A. Hasin, L.V. Kovalenko, Steel USSR, 17, 21 (1987)Google Scholar
  77. 77.
    E.V. Kolotukhin, B.A. Baum, G.V. Tjagunov, V.N. Larionov, Izv. Akad. Nauk SSSR. Met. (2), 10 (1989)Google Scholar
  78. 78.
    E.A. Kuleshova, E.V. Kolotukhin, E.E. Baryshev, et al., Metalloved. Termich. Obrab. Met. 11, 61 (1990)Google Scholar
  79. 79.
    B.A. Baum, V.N. Larionov, L.V. Kovalenko, G.V. Tjagunov, E.A. Kuleshova, E.E. Baryshev, E.E. Tretjakova, E.V. Kolotukhin, Metally (1), 31–37 (1993)Google Scholar
  80. 80.
    V.I. Dobatkin, R.M. Gabidullin, B.A. Kolachev, G.S. Makarov, Gases and Oxides in Aluminum Wrought Alloys (Metallurgiya, Moscow, 1976)Google Scholar
  81. 81.
    R.-S. Zhou, R.L. Snyder, Acta Crystal. B47, 617–630 (1991)CrossRefGoogle Scholar
  82. 82.
    H.-L. Gross, W. Mader, Chem. Comm. 1, 55–56 (1997)CrossRefGoogle Scholar
  83. 83.
    P. Souza Santos, H. Souza Santos, S.P. Toledo, Mater. Res. 3(4), 104–114 (2000)CrossRefGoogle Scholar
  84. 84.
    G.W. Brindley, J.O. Choe, J. Mineral. Soc. Am. 46, 771–785 (1961)Google Scholar
  85. 85.
    P. Šebo, J. Ivan, L. Táborský, A. Havalda, Kovove Mater. 11, 173–180 (1973)Google Scholar
  86. 86.
    J.A. Champion, B.J. Keene, J.M. Sillwood, J. Mater. Sci. 4, 39–49 (1969)CrossRefGoogle Scholar
  87. 87.
    H. John, H. Hausner, J. Mater. Sci. Lett. 5, 540–551 (1986)CrossRefGoogle Scholar
  88. 88.
    T.V. Atamanenko, D.G. Eskin, L. Zhang, L. Katgerman, Metall. Mater. Trans. A 41A, 2056–2066 (2010)CrossRefGoogle Scholar
  89. 89.
    G.I. Eskin, Ultrasonic Treatment of Light Alloy Melts (Gordon & Breach OPA, Amsterdam, 1998)CrossRefGoogle Scholar
  90. 90.
    G.I. Eskin, D.G. Eskin, Z. Metallkde. 95, 682–690 (2004)CrossRefGoogle Scholar
  91. 91.
    F. Wang, D. Eskin, J. Mi, T. Connolley, M. Mounib, L. Lindsay, Acta Mater. 116, 354–363 (2016)CrossRefGoogle Scholar
  92. 92.
    P. Li, V.I. Nikitin, E.G. Kandalova, K.V. Nikitin, Mater. Sci. Eng. A 332, 371 (2002)CrossRefGoogle Scholar
  93. 93.
    D.H. StJohn, M. Qian, A. Easton, P. Cao, Z. Hildebrand, Metall. Mater, Trans. A 36A, 1669–1679 (2005)CrossRefGoogle Scholar
  94. 94.
    D. Qiu, M.-X. Zhang, J.A. Taylor, P.M Kelly. Solidification Processing, in Proceedings of the 5th Decennial International Conference on Solidification Processing, ed. by H. Jones (University of Sheffield, Sheffield, 2007), pp. 153–158Google Scholar
  95. 95.
    E.F. Emley, Principles of Magnesium Technology (Pergamon, Oxford, 1966)Google Scholar
  96. 96.
    P. Cao, M. Qian, D.H. StJohn, Scr. Mater. 53, 841–844 (2005)CrossRefGoogle Scholar
  97. 97.
    F.S. Yin, X.F. Sun, J.G. Li, H.R. Guan, Z.Q. Hu, Scripta Mater 48, 425 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ulf Dahlborg
    • 1
  • Monique Calvo-Dahlborg
    • 1
    Email author
  • Dmitry G. Eskin
    • 2
  • Piotr S. Popel
    • 3
  1. 1.Université de Rouen Normandie, Groupe de Physique des MateriauxSaint-Etienne-du-Rouvray CedexFrance
  2. 2.Brunel Centre for Advanced Solidification Technology, Brunel University LondonUxbridgeUK
  3. 3.Ural State Pedagogical University, Department of Physics and Mathematical ModellingEkaterinburgRussia

Personalised recommendations