High Magnetic Field Processing of Metal Alloys

  • Yves FautrelleEmail author
  • Jiang Wang
  • Dafan Du
  • Xi Li
  • Zhongming Ren
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 273)


Recently, Direct Current (DC) magnetic field processing of materials has found widespread applications in metallurgy, especially in metals and semiconductor industries. The main goal is to control the behavior of melts during solidification so as to improve process performance and achieve better quality products. DC magnetic fields are effective in introducing some special magnetohydrodynamic effects, e.g., flow damping, which are commonly used in continuous casting of steels or crystal growth control. In parallel, the development of super conducting technology, which is able to produce high magnetic fields in a large space, has open many new possibilities in control of the processing of materials in solid and liquid state. The novelty comes from the creation of magnetization forces on non-magnetic or feeble magnetic materials due to high magnetic fields. Morerover, it has been realized quite recently that the thermo-electric phenomena under high DC magnetic field can produce strong electromagnetic forces in solid and liquid metals, leading to a phenomenon called Thermo-Electric-Magnetic Convection (TEMC). The forces are able to generate significant liquid motion especially when temperature gradients are present, and therefore strongly influence the solidification of metallic alloys. This chapter reviews the major progresses and applications related to the uses of strong/intense DC magnetic fields in processing of materials (mainly metallic alloys) in solidification processes. In the first section, we review the underlying principles in magnetohydrodynamics and magnetic effects. In the second section, we discuss the phenomena induced by DC magnetic fields in materials processing. We deal in particular with flow damping effects on liquid metals, and control of structure of materials during solidification, including texturing, phase separation and thermoelectric effect. Finally we give two examples of successful industrial applications.


DC magnetic field Liquid metal High magnetic field Maxwell equations Navier-Stokes equations Electromagnetic processing of materials Magnetic levitation Magnetic phase separation Phase alignment Thermoelectric convection Thermoelectric power Electromagnetic damping Magnetization effect Magnetization energy Magnetic susceptibility Feeble magnetic materials Magnetization force Crystal orientation Electromagnetic force Continuous casting Crystal growth Magnetohydrodynamics Hartmann number 


  1. 1.
    H.K. Moffatt, M.R.E. Proctor (eds.), in Proceedings of the Symposium of the International Union of Theoretical and Applied Mechanics, Cambridge, UK, Sept 1982 (The Metals Society, 1982)Google Scholar
  2. 2.
    S. Molokov, R. Moreau, H.K. Moffatt, Magnetohydrodynamics, Historical Evolution and Trends (Springer, Dordrecht, 2007)CrossRefGoogle Scholar
  3. 3.
    S. Asai, Electromagnetic Processing of Materials (Springer, Dordrecht, 2012)CrossRefGoogle Scholar
  4. 4.
    B.G. Thomas, R. Chaudhary, in State of the Art in Electromagnetic Flow Control in Continuous Casting of Steel Slabs: Modelling and Plant Validation. 6th International Conference on Electromagnetic Processing of Materials (Forschunszentrum Dresden-Rossendorf, Dresden, 2009), pp. 9–14, isbn:978-3-936104-65-3Google Scholar
  5. 5.
    H. Ozoe, J. Szmyd, T. Tagawa, Magnetic fields in semiconductor crystal growth, in Magnetohydrodynamics, Fluid Mechanics and Its Applications, ed. by S. Molokov, R. Moreau, H.K. Moffatt, vol. 80 (Springer, Dordrecht, 2007), pp. 375–390Google Scholar
  6. 6.
    B.Q. Li, Solidification processing of materials in magnetic field. JOM 50(2), 1–13 (1998)Google Scholar
  7. 7.
    E. Beaugnon, R. Tournier, Levitation of organic materials. Nature 349(6309), 470 (1991). Scholar
  8. 8.
    E. Beaugnon, D. Bourgault, D. Braithwaite, P. De Rango, R. Perrier de la Bathie, A. Sulpice, R. Tournier, Material processing in high static magnetic field. A review of an experimental study on levitation, phase separation, convection and texturation. J. Phys. I 3, 399–421 (1993)Google Scholar
  9. 9.
    S. Ueno, M. Iwasaka, Properties of diamagnetic fluid in high gradient magnetic fields. J. Appl. Phys. 75, 7177–7179 (1994)CrossRefGoogle Scholar
  10. 10.
    N. Hirota, H. Uetake, T. Takayama, Y. Ikezoe, H. Wada, K. Kitazawa, in Magnetic Field Effects on Feeble Magnetic Materials and their Applications, ed by S. Asai, Y. Fautrelle, P. Gillon, F. Durand. 4th International Conference on EPM (EPM Madylam, Grenoble, 2003), pp. 453–458Google Scholar
  11. 11.
    Z.H.I. Sun, M. Guo, J. Vleugels, O. Van der Biest, B. Blanpain, Strong static magnetic field processing of metallic materials: A review. Curr. Opinion Solid State Mater. Sci. 16, 254–276 (2012)CrossRefGoogle Scholar
  12. 12.
    A.J. Shercliff, Thermoelectric magnetohydrodynamics. J. Fluid Mech. 91, 231–251 (1979)CrossRefGoogle Scholar
  13. 13.
    E. Mikelson, Y.-K. Karklin, Control of crystallization processes by means of magnetic fields. J. Cryst. Growth 52, 524–529 (1981)CrossRefGoogle Scholar
  14. 14.
    A.L. Gorbunov, Effect of thermoelectromagnetic convection on the production of bulk single crystals consisting of semiconductor melts in a constant magnetic field. Magn. Gidrodin. 4, 65–69 (1987)Google Scholar
  15. 15.
    P. Lehmann, R. Moreau, D. Camel, R. Bolcato, Modification of interdendritic convection in directional solidification by a uniform magnetic field. Acta Mater. 46, 4067–4079 (1998)CrossRefGoogle Scholar
  16. 16.
    S. Yesilyurt, L. Vujisic, S. Motakef, F.R. Szofran, A. Croell, The influence of thermoelectromagnetic convection on the Bridgman growth of semiconductors. J. Cryst. Growth 211, 360–364 (2000)CrossRefGoogle Scholar
  17. 17.
    X. Li, Y. Fautrelle, Z.M. Ren, Influence of an axial high magnetic field on the liquid-solid transformation in Al-Cu hypoeutectic alloys and on the microstructure of the solid. Acta Mater. 55, 1377–1386 (2007)CrossRefGoogle Scholar
  18. 18.
    X. Li, Y. Fautrelle, K. Zaidat, A. Gagnoud, Z.M. Ren, Y.D. Chang, R. Moreau, C. Esling, Columnar-to-equiaxed transition in Al-based alloys during directional solidification under a high magnetic field. J. Cryst. Growth 312(2), 267–272 (2010)CrossRefGoogle Scholar
  19. 19.
    J. Wang, Y. Fautrelle, Z.M. Ren, X. Li, H. Nguyen-Thi, N. Mangelinck-Noel, G. Salloum Abou Jaoude, Y.B. Zhong, I. Kaldre, A. Bojarevics, L. Buligins, Thermoelectric magnetic force acting on the solid during directional solidification under a static magnetic field. Appl. Phys. Lett. 101, 251904-1–251904-4 (2012)Google Scholar
  20. 20.
    R. Moreau, Magnetohydrodynamics (Kluwer Academic, Dordrecht, 1990)CrossRefGoogle Scholar
  21. 21.
    Y.Y. Khine, S.J. Walker, Thermoelectric MHD effects during Bridgman semiconductor crystal growth with a uniform axial magnetic field. J. Cryst. Growth 183, 150–158 (1998)CrossRefGoogle Scholar
  22. 22.
    I. Kaldre, Y. Fautrelle, J. Etay, A. Bojarevics, L. Buligins, Absolute thermoelectric power of Pb-Sn alloys. Mod. Phys. Lett. B 25(10), 731–738 (2011)CrossRefGoogle Scholar
  23. 23.
    X. Li, Y. Fautrelle, Z.M. Ren, Influence of thermoelectric effects on the solid–liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al–Cu alloys under a magnetic field. Acta Mater. 55, 3803–3813 (2007)CrossRefGoogle Scholar
  24. 24.
    K. Takahashi, I. Mogi, S. Awaji, K. Watanabe, in Magnetic Levitation Furnace Combined with a Hybrid Magnet. 5th International Symposium on Electromagnetic Processing of Materials (The Iron and Steel Institute of Japan, Sendai, 2006), pp. 599–603, isbn:4-930980-55-0 C3057Google Scholar
  25. 25.
    G.A. Thomson, W.J. Wagner, Preparation and properties of InAs1-xPx alloys. J. Phys. Chem. Solids 32, 2613–2619 (1971)CrossRefGoogle Scholar
  26. 26.
    Z. Hu, Y. Zhang, J. She, The role of Nd on the microstructural evolution and compressive behavior of Ti–Si alloys. Mater. Sci. Eng. A 560, 583–588 (2013)CrossRefGoogle Scholar
  27. 27.
    H.E. Brandt, Levitation in physics. Science 243, 349–355 (1989)CrossRefGoogle Scholar
  28. 28.
    N. Hirota, Magneto-Archimedes effect and related effect, in Magneto-science - Magnetic field effects on materials: Fundamentals and applications, ed. by M. Yamaguchi, Y. Tanimoto Kodansha (Springer, Berlin, 2006), pp. 55–70Google Scholar
  29. 29.
    B.T. Jones, A necessary condition for magnetic levitation. J. Appl. Phys. 50, 5057–5058 (1979)CrossRefGoogle Scholar
  30. 30.
    Y. Ikezoe, T. Kaihatsu, S. Sakae, et al., Separation of feeble magnetic particles with magneto-Archimede levitation. Energy Convers. Manag. 43, 417–425 (2002)CrossRefGoogle Scholar
  31. 31.
    M. Tagami, M. Hamai, I. Mogi, K. Watanabe, M. Motokawa, Solidification of levitating water in a gradient strong magnetic field. J. Cryst. Growth 203, 594–598 (1999)CrossRefGoogle Scholar
  32. 32.
    Q. Wang, T. Liu, A. Gao, et al., A novel method for in situ formation of bulk layered composites with compositional gradients by magnetic field gradient. Scr. Mater. 56, 1087–1090 (2007)CrossRefGoogle Scholar
  33. 33.
    X. Li, Z.M. Ren, Y. Fautrelle, Phase distribution and phase structure control through a high gradient magnetic field during the solidification process. Mater. Des. 29, 1796–1801 (2008)CrossRefGoogle Scholar
  34. 34.
    S. Maki, Y. Tanimoto, C. Chikako Udagawa, S. Shotaro Morimoto, M. Hagiwara, In situ observation of containerless protein crystallization by magnetically levitating crystal growth. Jpn. J. Appl. Phys. 55, 035505 (2016)CrossRefGoogle Scholar
  35. 35.
    J. Langer, Issues and opportunities in materials research. Phys. Today 45, 24–31 (1992)CrossRefGoogle Scholar
  36. 36.
    B.W. Thomson, Thermal convection in a magnetic field. Philos. Mag. Ser. 42, 1417–1432 (1951)CrossRefGoogle Scholar
  37. 37.
    B. Lehnert, C.N. Little, Experiments on the effect of inhomogeneity and obliquity of a magnetic field in inhibiting convection. Tellus 9, 97–103 (1957)Google Scholar
  38. 38.
    K.-H. Spitzer, M. Dubke, K. Schwerdtfeger, Rotational electromagnetic stirring in continuous casting of round strands. Metall. Trans. B 17, 119–131 (1986)CrossRefGoogle Scholar
  39. 39.
    P.H. Utech, C.M. Flemings, Elimination of solute banding in indium antimonite crystals by growth in a magnetic field. J. Appl. Phys. 37, 2021–2024 (1966)CrossRefGoogle Scholar
  40. 40.
    L. He, X. Li, P. Zhu, et al., Effects of high magnetic field on the evolutions of constituent phases in 7085 aluminum alloy during homogenization. Mater. Charact. 71, 19–23 (2012)CrossRefGoogle Scholar
  41. 41.
    M.K. Liu, P.D. Lu, T.H. Zhou, et al., Influence of a high magnetic field on the microstructure and properties of a Cu-Fe-Ag in situ composite. Mater. Sci. Eng. A 584, 114–120 (2013)CrossRefGoogle Scholar
  42. 42.
    E.M. Savitsky, R.S. Torchinova, S.A. Turanov, Effect of crystallization in magnetic field on the structure and magnetic properties of Bi-Mn alloys. J. Cryst. Growth 52, 519–523 (1981)CrossRefGoogle Scholar
  43. 43.
    D.E. Farrell, B.S. Chandrasekhar, M.R. DeGuire, et al., Superconducting properties of aligned crystalline grains of Y1Ba2Cu3O7-δ. Phys. Rev. B 36, 4025–4027 (1987)CrossRefGoogle Scholar
  44. 44.
    P. De Rango, M. Lees, P. Lejay, et al., Texturing of magnetic materials at high temperature by solidification in a magnetic field. Nature 349, 770–772 (1991)CrossRefGoogle Scholar
  45. 45.
    L. Zhang, J. Vleugels, O. Van der Biest, Slip casting of alumina suspensions in a strong magnetic field. J. Am. Ceram. Soc. 93, 3148–3152 (2010)CrossRefGoogle Scholar
  46. 46.
    X.W. Zhu, Y. Sakka, T.S. Suzuki, T. Uchikoshi, S. Kikkawa, The c-axis texturing of seeded Si3N4 with β-Si3N4 whiskers by slip casting in a rotating magnetic field. Acta Mater. 58, 146–161 (2010)CrossRefGoogle Scholar
  47. 47.
    S. Li, K. Sassa, S. Asai, Preferred orientation of Si3N4 ceramics by slip casting in a high magnetic field. Ceram. Int. 32, 701–705 (2006)CrossRefGoogle Scholar
  48. 48.
    X. Li, Z.M. Ren, Y. Fautrelle, Effect of a vertical magnetic field on the dendrite morphology during Bridgman crystal growth of Al–4.5 wt% Cu. J. Cryst. Growth 290, 571–575 (2006)CrossRefGoogle Scholar
  49. 49.
    X. Li, Y. Fautrelle, Z. Ren, Influence of a high magnetic field on columnar dendrite growth during directional solidification. Acta Mater. 55, 5333–5347 (2007)CrossRefGoogle Scholar
  50. 50.
    Y.W. Ma, Z.T. Wang, To enhance Jc of Bi-2223 Ag-sheathed superconducting tapes by improving grain alignment with magnetic field. Phys. C 282, 2619–2620 (1997)CrossRefGoogle Scholar
  51. 51.
    T. Liu, Q. Wang, C. Zhang, et al., Formation of chainlike structures in an Mn-89.7 wt%Sb alloy during isothermal annealing process in the semisolid state in a high magnetic field. J. Mater. Res. 24, 2321–2330 (2011)CrossRefGoogle Scholar
  52. 52.
    H. Yasuda, I. Ohnaka, Y. Yamamoto, et al., Formation of crystallographically aligned BiMn grains by semi-solid processing of rapidly solidified Bi-Mn alloys under a magnetic field. Mater. Trans. 44, 2207–2212 (2003)CrossRefGoogle Scholar
  53. 53.
    C. Lou, Q. Wang, C. Wang, et al., Migration and rotation of TiAl3 particles in an Al-melt solidified under high magnetic field conditions. J. Alloys Compd. 472, 225–229 (2009)CrossRefGoogle Scholar
  54. 54.
    X. Li, Y. Fautrelle, Z. Ren, et al., Effect of a high magnetic field on the Al–Al3Ni fiber eutectic during directional solidification. Acta Mater. 58, 2430–2441 (2010)CrossRefGoogle Scholar
  55. 55.
    S. Awaji, K. Watanabe, M. Motokawa, et al., Melt textured process for YBCO in high magnetic fields. IEEE Trans. Appl. Supercond. 9, 2014–2017 (1999)CrossRefGoogle Scholar
  56. 56.
    X. Li, Z. Ren, Y. Fautrelle, The alignment, aggregation and magnetization behaviors in MnBi–Bi composites solidified under a high magnetic field. Intermetallics 15, 845–855 (2007)CrossRefGoogle Scholar
  57. 57.
    S. Asai, K. Sassa, M. Tahashi, Crystal orientation of non-magnetic materials by imposition of a high magnetic field. Sci. Technol. Adv. Mater. 4, 455–460 (2003)CrossRefGoogle Scholar
  58. 58.
    R. Tournier, E. Beaugnon, Texturing by cooling a metallic melt in a magnetic field. Sci. Technol. Adv. Mater. 10, 014501 (2009)CrossRefGoogle Scholar
  59. 59.
    M. Villeret, S. Rodriguez, E. Kartheuser, Magnetic anisotropy of cubic iron-based diluted magnetic semiconductors. Phys. Rev. B 43, 3443–3449 (1991)CrossRefGoogle Scholar
  60. 60.
    H. Morikawa, K. Sassa, S. Asai, Control of precipitating phase alignment and crystal orientation by imposition of a high magnetic field. Mater. Trans. JIM 39, 814–818 (1998)CrossRefGoogle Scholar
  61. 61.
    M. Hiroshi, T. Yoshiaki, F. Masao, et al., A new high-Tc oxide superconductor without a rare earth element. Jpn. J. Appl. Phys. 27, L209 (1988)CrossRefGoogle Scholar
  62. 62.
    M. Mansori, H. Faqir, P. Satre, et al., A new single crystal growth method of (Bi,Pb)2Sr2CaCu2Oz superconductor. J. Cryst. Growth 197, 141–146 (1999)CrossRefGoogle Scholar
  63. 63.
    F. Gaucherand, E. Beaugnon, Magnetic texturing in ferromagnetic cobalt alloys. Phys. B 346-347, 262–266 (2004)CrossRefGoogle Scholar
  64. 64.
    S. Ren, Z.M. Ren, W. Ren, Growth orientation control of Zn films with strong magnetic field. Chin. J. Vac. Sci. Technol. 4, 430–433 (2010)Google Scholar
  65. 65.
    K. Iwai, J. Akiyama, M.G. Sung, et al., Application of a strong magnetic field on materials fabrication and experimental simulation. Sci. Technol. Adv. Mater. 7, 365–368 (2006)CrossRefGoogle Scholar
  66. 66.
    K. Kang, L.H. Lewis, A.R. Moodenbaugh, Alignment and analyses of MnBi/Bi nanostructures. Appl. Phys. Lett. 87, 062505 (2005)CrossRefGoogle Scholar
  67. 67.
    C.G. Kang, S.W. Youn, Mechanical properties of particulate reinforced metal matrix composites by electromagnetic and mechanical stirring and reheating process for thixoforming. J. Mater. Process. Technol. 147, 10–22 (2004)CrossRefGoogle Scholar
  68. 68.
    O. Bonino, P.D. Rango, R. Tournier, Directional growth of polycrystalline magnetostrictive TbxDy1−xFey compounds by casting in a strong unidirectional gradient. J. Magn. Magn. Mater. 212, 225–230 (2000)CrossRefGoogle Scholar
  69. 69.
    L. Valko, M. Valko, On influence of the magnetic field effect on the solid-melt phase transformations. IEEE Trans. Magn. 30, 1122–1123 (1994)CrossRefGoogle Scholar
  70. 70.
    C. Rosenblatt, Magnetic field dependence of the nematic-isotropic transition temperature. Phys. Rev. A 24, 2236 (1981)CrossRefGoogle Scholar
  71. 71.
    H. Inaba, K.I. Tozaki, H. Hayashi, C. Quan, N. Nemoto, T. Kimura, Magnetic effect on the phase transitions of n-C32H66 measured by high resolution and super-sensitive DSC. Phys. B Condens. Matter 324, 63–71 (2002)CrossRefGoogle Scholar
  72. 72.
    H. Inaba, T. Saitou, K. Tozaki, H. Hayashi, Effect of the magnetic field on the melting transition of H2O and D2O measured by a high resolution and supersensitive differential scanning calorimeter. J. Appl. Phys. 96 (2004).
  73. 73.
    X. Li, Y. Fautrelle, Z.M. Ren, High-magnetic-field-induced solidification of diamagnetic Bi. Scr. Mater. 59, 407–410 (2008)CrossRefGoogle Scholar
  74. 74.
    M.N. Magomedov, On the magnetic-field-induced changes in the parameters of phase transitions. Tech. Phys. Lett. 28, 116–118 (2002)CrossRefGoogle Scholar
  75. 75.
    M. Hasegawa, S. Asai, Effects of static magnetic field on undercooling of a copper melt. J. Mater. Sci. 27, 6123–6126 (1992)CrossRefGoogle Scholar
  76. 76.
    Y.K. Zhang, J. Gao, Y.L. Zhou, et al., Undercooling behavior of glass-fluxed Sb melts under gradient magnetic fields. J. Mater. Sci. 45, 1648–1654 (2009)CrossRefGoogle Scholar
  77. 77.
    T. Liu, Q. Wang, F. Liu, et al., Nucleation behavior of bulk Ni–Cu alloy and pure Sb in High magnetic fields. J. Cryst. Growth 321, 167–170 (2011)CrossRefGoogle Scholar
  78. 78.
    J. Wang, E. Beaugnon, J. Li, et al., in Effect of Static Magnetic Fields on the Recalescence Behavior of Undercooled Co-Sn Liquid. The 7th International Conference on Electromagnetic Processing of Materials Beijing, 2012Google Scholar
  79. 79.
    C.J. Li, H. Yang, Z.M. Ren, et al., On nucleation temperature of pure aluminum in magnetic fields. Prog. Electromagn. Res. Lett. 15, 45–52 (2010)CrossRefGoogle Scholar
  80. 80.
    C.J. Li, Z.M. Ren, W.L. Ren, Effect of magnetic fields on solid-melt phase transformation in pure bismuth. Mater. Lett. 63, 269–271 (2009)CrossRefGoogle Scholar
  81. 81.
    C.J. Li, H. Yang, Z.M. Ren, et al., Application of differential thermal analysis to investigation of magnetic field effect on solidification of Al-Cu hypereutectic alloy. J. Alloys Compd. 505, 108–112 (2010)CrossRefGoogle Scholar
  82. 82.
    C. Li, R. Guo, Z. Yuan, et al., Magnetic-field dependence of nucleation undercoolings in nonmagnetic metallic melts. Philos. Mag. Lett. 95, 37–43 (2015)CrossRefGoogle Scholar
  83. 83.
  84. 84.
    M.A. Jaworski, T.K. Gray, M. Antonelli, J.J. Kim, C.Y. Lau, M.B. Lee, M.J. Neumann, W. Xu, D.N. Ruzic, Thermoelectric MHD stirring of liquid metals. Phys. Rev. Lett. 104, 094503 (2010)CrossRefGoogle Scholar
  85. 85.
    E. Luebke, B.L. Vandenberg, Heat-exchanger pump, U.S. Patent 2,748,710, Jun 1956Google Scholar
  86. 86.
    W. Murgatroyd, Improvements in or relating to heat transfer systems, UK Patent, UK appl 20911/51, 1951Google Scholar
  87. 87.
    K.F. Schoh, An experimental liquid metal thermoelectric electromagnetic pump heat exchange. Report of General Electric Company No. R56GL94, 1956Google Scholar
  88. 88.
    D. Rex Von, Thermoelektrische Pumpen fur flussige Metalle. VDI Z 103, 17–23 (1961)Google Scholar
  89. 89.
    J.F. Osterle, S.W. Angrist, The thermoelectric hydromagnatic pump. Trans. A.S.M.E. C 86, 166–179 (1964)CrossRefGoogle Scholar
  90. 90.
    R.S. Rocklin, Thermoelectric pump, U.S. Patent 3,116,693, 1964Google Scholar
  91. 91.
    A.M. Perlow, M.H. Dieckamp, Thermoelectric pump, U.S. Patent 3,288,070, Nov 1966Google Scholar
  92. 92.
    M. Cachard de, P. Caunes, Thermosyphon à sodium pour irradiation en piled’é1ements combustibles. Centre d’Etudes Nucleaires Grenoble Rep 69, 472–485 (1969)Google Scholar
  93. 93.
    V.S. Makarov, A.K. Cherkasskii, Pressure consumption characteristic and efficiency of a thermoelectriomagnetic pump. Magn. Gidrodin. 5, 127–141 (1969)Google Scholar
  94. 94.
    A.J. Shercliff, The pipe end problem in thermoelectric MHD. J. Appl. Math. Phys. 30, 94–112 (1980)Google Scholar
  95. 95.
    A.J. Shercliff, Thermoelectric MHD with walls parallel to the magnetic field. Int. J. Heat Mass Transf. 23, 1219–1228 (1980)CrossRefGoogle Scholar
  96. 96.
    A.L. Gorbunov, D.E. Lyumkis, Unique features encountered in the influence exerted by thermoelectromagnetic convection on melt hydrodynamics in the process of monocrystal growth by the czochralski method in a magnetic field. Magn. Gidrodin. 7, 75–82 (1990)Google Scholar
  97. 97.
    T. Alboussière, R. Moreau, D. Camel, Influence of a magnetic field on the solidification of metallic alloys. C. R. Acad. Sci. 313, 749–755 (1991)Google Scholar
  98. 98.
    R. Moreau, O. Laskar, M. Tanaka, et al., Thermoelectric MHD effects on solidification of metallic alloys in the dendritic regime. Mater. Sci. Eng. 173, 93–100 (1993)CrossRefGoogle Scholar
  99. 99.
    O. Lielausis, J. Kjavins, A. Mikelsons, J. Valdmanis, V. Golovanov, Potentials, currents and thermoelectric effects at continuous casting, in Proceedings of 1st International Symposium on Electromagnetic Processing of Materials, (The Iron and Steel Institute of Japan, Nagoya, 1994), pp. 555–560Google Scholar
  100. 100.
    S. Kaddeche, B.H. Hadid, D. Henry, Macrosegregation and convection in the horizontal Bridgman configuration 1: dilute alloys. J. Cryst. Growth 135, 341–353 (1994)CrossRefGoogle Scholar
  101. 101.
    R. Moreau, O. Laskar, M. Tanaka, Thermoelectric and MHD effects on solidification alloys, in Proceedings of 1st International Symposium on Electromagnetic Processing of Materials, (The Iron and Steel Institute of Japan, Nagoya, 1994), pp. 549–554Google Scholar
  102. 102.
    P. Lehmann, R. Moreau, D. Camel, R. Bolcato, Modification of interdendritic convection by a magnetic field. Mater. Sci. Forum 217-222, 235–240 (1996)CrossRefGoogle Scholar
  103. 103.
    P. Lehmann, R. Moreau, D. Camel, R. Bolcato, A simple analysis of the effect of convection on the structure of the mushy zone in the case of horizontal Bridgman solidification comparison with experimental results. J. Cryst. Growth 183, 690–704 (1998)CrossRefGoogle Scholar
  104. 104.
    P. Dold, R.F. Szofran, W.K. Benz, Thermoelectromagnetic convection in vertical Bridgman grown germanium-silicon. J. Cryst. Growth 291, 1–7 (2006)CrossRefGoogle Scholar
  105. 105.
    A. Cröll, R.F. Szofran, P. Dold, et al., Floating zone growth of silicon in magnetic fields 2: strong static axial fields. J. Cryst. Growth 183, 554–563 (1998)CrossRefGoogle Scholar
  106. 106.
    Y.Y. Khine, S.J. Walker, R.F. Szofran, Thermoelectric MHD effects during Bridgman semiconductor crystal growth with a uniform axial magnetic field. J. Cryst. Growth 212, 584–596 (2000)CrossRefGoogle Scholar
  107. 107.
    S. Yesilyurt, L. Vujisic, S. Motakef, F.R. Szofran, et al., A numerical investigation of the effect of thermoelectriomagnetic convection on the Bridgman growth of Ge1-xSix. J. Cryst. Growth 207, 278–291 (1999)CrossRefGoogle Scholar
  108. 108.
    S. Yesilyurt, L. Vujisic, S. Motakef, F.R. Szofran, A. Croell, The influence of thermoele-ctromagnetic convection on the Bridgman growth of semiconductors. J. Cryst. Growth 211, 360–364 (2000)CrossRefGoogle Scholar
  109. 109.
    S.J. Walker, A. Croell, R.F. Szofran, Thermoelectromagnetic convection in floating zone silicon growth with a nonaxisymmetric temperature and a strong magnetic field. J. Cryst. Growth 223, 73–82 (2001)CrossRefGoogle Scholar
  110. 110.
    Q. Liu, Thermoelectric MHD effects on directional solidification structure of Al-Cu alloy, Master Thesis, Liaoning Technical University, 2002Google Scholar
  111. 111.
    Z.Y. Gao, Effect of TEMHD on the microstructure of directionally solidified Al alloy, Master Thesis, Liaoning Technical University, 2006Google Scholar
  112. 112.
    X. Li, Z.M. Ren, Y. Fautrelle, et al., Degeneration of columnar dendrites during directional solidification under a high magnetic field. Scr. Mater. 60, 443–446 (2009)CrossRefGoogle Scholar
  113. 113.
    F. Baltaretu, J. Wang, S. Letout, Z.M. Ren, X. Li, O. Budenkova, Y. Fautrelle, Thermoelectric effects on electroconducting particles in liquid metal. Magnetohydrodynamics 51(1), 3–13 (2015)Google Scholar
  114. 114.
    G. Salloum-Abou-Jaoude, J. Wang, L. Abou-Khalil, G. Reinhart, Z.M. Ren, N. Mangelinck-Noel, X. Li, Y. Fautrelle, H. Nguyen-Thi, Motion of equiaxed grains during directional solidification understatic magnetic field. J. Cryst. Growth 417, 25–30 (2015)CrossRefGoogle Scholar
  115. 115.
    X. Li, Y. Fautrelle, Z.M. Ren, Morphological instability of cell and dendrite during directional solidification under a high magnetic field. Acta Mater. 56, 3146–3161 (2008)CrossRefGoogle Scholar
  116. 116.
    J. Wang, Y. Fautrelle, H. Nguyen Thi, G. Reinhart, H. Liao, X. Li, Y. Zhong, Z. Ren, Thermoelectric magnetohydrodynamic flows and their induced change of solid–liquid interface shape in static magnetic field-assisted directional solidification. Metall. Mater. Trans. A 47A, 1169–1179 (2016)CrossRefGoogle Scholar
  117. 117.
    H. Yasuda, K. Nogita, C. Gourlay, et al., In-situ observation of Sn alloy solidification at Spring8. J. Jpn. Weld. Soc. 78, 6–9 (2009)Google Scholar
  118. 118.
    W.L. Ren, T. Zhang, Z.M. Ren, et al., A dramatic increase in dendrite number for directionally solidified superalloy DZ417G with a strong static magnetic field. Mater. Lett. 63, 382–385 (2009)CrossRefGoogle Scholar
  119. 119.
    Y. Shen, Z.M. Ren, X. Li, et al., Effect of a low axial magnetic field on the primary Al2Cu phase growth in a directionally solidified Al-Cu hypereutectic alloy. J. Cryst. Growth 336, 67–71 (2011)CrossRefGoogle Scholar
  120. 120.
    X. Li, Y. Fautrelle, Z.M. Ren, et al., Effect of a high magnetic field on the morphological instability and irregularity of the interface of a binary alloy during directional solidification. Acta Mater. 57, 1689–1701 (2009)CrossRefGoogle Scholar
  121. 121.
    X. Li, A. Gagnoud, Y. Fautrelle, et al., Investigation of thermoelectric magnetic force in solid and its effects on morphological instability in directional solidification. J. Cryst. Growth 324, 217–224 (2011)CrossRefGoogle Scholar
  122. 122.
    X. Li, Y. Fautrelle, Z.M. Ren, Morphological instability of interface, cell and dendrite during directional solidification under strong magnetic field. J. Cryst. Growth 318, 23–27 (2011)CrossRefGoogle Scholar
  123. 123.
    X. Li, A. Gagnoud, Y. Fautrelle, et al., Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field. Acta Mater. 60, 3321–3332 (2012)CrossRefGoogle Scholar
  124. 124.
    X. Li, Y. Fautrelle, K. Zaidat, et al., Columnar-to-equiaxed transitions in Al-based alloys during directional solidification under a high magnetic field. J. Cryst. Growth 312, 267–272 (2010)CrossRefGoogle Scholar
  125. 125.
    X. Li, Y.D. Zhang, Y. Fautrelle, Z.M. Ren, C. Esling, Experimental evidence for liquid/solid interface instability caused by the stress in the solid during directional solidification under a strong magnetic field. Scr. Mater. 60, 489–492 (2009)CrossRefGoogle Scholar
  126. 126.
    E. Takeuchi, Applied MHD in the process of continuous casting, in Magnetohydrodynamics in Process Metallurgy, ed. by J. Szekely, J.W. Evans, K. Blazek, N. El Kaddah (The Minerals, Metals & Materials Society, Warrendale, 1991), pp. 189–202Google Scholar
  127. 127.
    E. Takeuchi, H. Tanaka, H. Kajioka, International Symposium on Electromagnetic Processing of Materials (The Iron and Steel Institute of Japan, Tokyo, 1994), pp. 364–371Google Scholar
  128. 128.
    S. Takeuchi, in Application of DC Magnetic Field to Iron and Steel Making Technologies EPM 2000. 3rd International Symposium on Electromagnetic Processing of Materials (The Iron and Steel Institute of Japan, Tokyo, 2000), pp. 171–175Google Scholar
  129. 129.
    B.G. Thomas, R. Singh, R. Chaudary, P. Vanka, in Flow Control with Ruler Electromagnetic Braking (EMBr) in Continuous Casting of Steel Slabs. BAC2013. Fifth Baosteel Biennial Academic Conference, Shanghai, PRC, June 4-6, 2013Google Scholar
  130. 130.
    S. Kunstreich, T. Gautreau, J.Y. Ren, A. Codutti, F. Guastini, M. Petronio, F. Vecchiet, in Experimental Approach to Develop Multi-Mode® EMB, An Advanced Electromagnetic Brake for Thin Slab Casters. 8th International Conference on Electromagnetic Processing of Materials (SIMAP, Saint Martin d’Heres, 2015), pp. 369–372, isbn:978-2-9553861-0-1Google Scholar
  131. 131.
    J. Etay, Y. Delannoy, Low frequency wave at the meniscus of a continuous caster generated by a DC magnetic field. Magnetohydrodynamics 39(4), 445–452 (2003)Google Scholar
  132. 132.
    S. Binod, P.A. Davidson, J. Etay, On the control of surface waves by a vertical magnetic field. Phys. Fluids 17, 117101 (2005)CrossRefGoogle Scholar
  133. 133.
    C.J. Xu, X.J. Zhang, J. Li, Z.Y. Wang, L.W. Zhang, Analysis of the effects of an electromagnetic brake (EMBr) on flow behaviors in the large slab continuous casting mold. METABK 55(3), 317–320 (2016)Google Scholar
  134. 134.
    Y. Gelfgat, Electromagnetic field application in the process of single crystal growth under microgravity. Acta Astronaut. 37, 333–345 (1995)CrossRefGoogle Scholar
  135. 135.
    T. Suzuki, N. Isawa, Y. Okbo, K. Hoshi, Cz Silicon Crystals Grown in a Transverse Magnetic Field. Semiconductor Silicon (The Electrochemical Society, Pennington, 1981), pp. 90–100Google Scholar
  136. 136.
    S. Kobayashi, Effects of an external magnetic field on solute distribution in Czochralski grown crustals—a theoretical analysis. J. Cryst. Growth 75, 301–308 (1986)CrossRefGoogle Scholar
  137. 137.
    A. Krause, A. Muiznieks, A. Mühlbauer, T. Wetzel, E. Tomzig, L. Gorbunov, A. Pedchenko, J. Virbulis, Numerical 3D modeling of turbulent melt flow in a large CZ system with horizontal DC magnetic field. II. Comparison with measurements. J. Cryst. Growth 265, 14–27 (2004)CrossRefGoogle Scholar
  138. 138.
    K. Hoshikawa, Czochralski silicon crystal growth in the vertical magnetic field. Jpn. J. Appl. Phys. 21(9), L545–L547 (1982)CrossRefGoogle Scholar
  139. 139.
    K.M. Kim, P. Smetana, Striations in CZ silicon crystals grown under various axial magnetic field strengths. J. Appl. Phys. 58(7), 2731–2734 (1985)CrossRefGoogle Scholar
  140. 140.
    D.T.J. Hurle, R.W. Series, Effective distribution coefficient in magnetic Czochralski growth. J. Cryst. Growth 73, 1–9 (1985)CrossRefGoogle Scholar
  141. 141.
    H. Fukui, K. Kakimoto, H. Ozoe, The convection under an axial magnetic field in a Czochralski configuration. Adv Comput Method Heat Transfer 27, 135–144 (1998)Google Scholar
  142. 142.
    T. Kimura et al., The effect of strong magnetic field on homogeneity in LEC GaAs single crystal. J. Cryst. Growth 79, 264–276 (1986)CrossRefGoogle Scholar
  143. 143.
    R.W. Series, Effects of a shaped magnetic field on Czochralski silicon growth. J. Cryst. Growth 97, 92–98 (1989)CrossRefGoogle Scholar
  144. 144.
    H. Hirata, K. Hoshikawa, Silicon crystal growth in a cusp magnetic field. J. Cryst. Growth 96, 745–755 (1989)CrossRefGoogle Scholar
  145. 145.
    J. Fukuda, T. Iwasaki, M. Tanaka, K. Kitahara, M. Hasebe, H. Harada, K. Nakai, Micro-fluctuation of growth rate and grow-in defect distribution in CZ-Si. Nippon Steel Technical Report 83, 2001, pp. 54–60Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yves Fautrelle
    • 1
    Email author
  • Jiang Wang
    • 2
  • Dafan Du
    • 2
  • Xi Li
    • 2
  • Zhongming Ren
    • 2
  1. 1.Univ. Grenoble Alpes, CNRS, Grenoble INP*, SIMaPGrenobleFrance
  2. 2.Shanghai Key Laboratory of Modern Metallurgy & Material Processing, Department of Material Science and EngineeringShanghai UniversityShanghaiPeople’s Republic of China

Personalised recommendations