Advertisement

Electromagnetic Stirring and Low-Frequency Electromagnetic Vibration

  • Jianzhong Cui
  • Haitao ZhangEmail author
  • Lei Li
  • Yubo Zuo
  • Hiromi Nagaumi
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 273)

Abstract

As the key parts of Electromagnetic Processing of Materials (EPM), electromagnetic stirring and low-frequency electromagnetic vibration processes have been developed to cause melt motion or vibration. In this chapter, we will firstly give a brief description of the physical principles of electromagnetic melt processing and solidification. Though partially repeating Chap.  3, it is still useful to recall them here. Next, the effects of electromagnetic stirring with a single set of induction coil and low-frequency electromagnetic vibration on heat/mass transfer and solidification structures are introduced. The last portion of this chapter deals with the casting technologies based on electromagnetic stirring and low-frequency electromagnetic vibration.

References

  1. 1.
    J.A. Shercliff, A Textbook of Magnetohydrodynamics (Pergamon Press, Oxford, 1965)Google Scholar
  2. 2.
    M. Zahn, Electromagnetic Field Theory: A Problems Solving Approach (Wiley, New York, 1979)Google Scholar
  3. 3.
    H. Zhang, H. Nagaumi, Y. Zuo, et al., Coupled modeling of electromagnetic field, fluid flow, heat transfer and solidification during low frequency electromagnetic casting of 7XXX aluminum alloys: part 1: development of a mathematical model and comparison with experimental results. Mater. Sci. Eng. A 448(1), 189–203 (2007)Google Scholar
  4. 4.
    F.H. Harlow, P.I. Nakayama, Transport of turbulence energy decay rate, Los Alamos Scientific Laboratory report LA-3854, 1968Google Scholar
  5. 5.
    G.H. Gulliver, The quantitative effect of rapid cooling upon the constitution of binary alloys. J. Inst. Met. 9, 120–157 (1913)Google Scholar
  6. 6.
    E. Scheil, Bemerkungen zur Schichtkristallbildung. Z. Metallkd. 34, 70–72 (1942)Google Scholar
  7. 7.
    S. Asai, I. Muchi, Theoretical analysis and model experiments on the formation mechanism of channel-type segregation. Trans. Iron Steel Inst. Jpn. 18, 90–98 (1978)Google Scholar
  8. 8.
    H.K. Moffatt, Electromagnetic stirring. Phys. Fluids A 3(5), 1336–1343 (1991)CrossRefGoogle Scholar
  9. 9.
    L.L. Tir, Features of mechanical energy transfer to a closed metal circuit in electromagnetic systems with azimuthal currents. Magnetohydrodynamics 12(2), 100–108 (1976)Google Scholar
  10. 10.
    V.A. Kompan et al., Magnetically controlled electroslag melting of titanium alloys. Modeling for Materials Processing, Riga, 2010, pp. 85–90Google Scholar
  11. 11.
    C. Vives, C. Perry, Effects of electromagnetic stirring during the controlled solidification of tin. Int. J. Heat Mass Transf. 29(1), 21–33 (1986)CrossRefGoogle Scholar
  12. 12.
    L. Hachani, B. Saadi, X.D. Wang, et al., Experimental analysis of the solidification of Sn–3 wt.% Pb alloy under natural convection. Int. J. Heat Mass Transf. 55(7), 1986–1996 (2012)CrossRefGoogle Scholar
  13. 13.
    S.F. Liu, L.Y. Liu, L.G. Kang, Refinement role of electromagnetic stirring and strontium in AZ91 magnesium alloy. J. Alloys Compd. 450(1), 546–550 (2008)CrossRefGoogle Scholar
  14. 14.
    H. Zhang, H. Nagaumi, J. Cui, Coupled modeling of electromagnetic field, fluid flow, heat transfer and solidification during low frequency electromagnetic casting of 7XXX aluminum alloys: part II: the effects of electromagnetic parameters on casting processes. Mater. Sci. Eng. A 448(1), 177–188 (2007)CrossRefGoogle Scholar
  15. 15.
    X. Wang, H. Zhang, Y. Zuo, et al., Experimental investigation of heat transport and solidification during low frequency electromagnetic hot-top casting of 6063 aluminum alloy. Mater. Sci. Eng. A 497(1-2), 416–420 (2008)CrossRefGoogle Scholar
  16. 16.
    A.N. Turchin, D.G. Eskin, L. Katgerman, Effect of melt flow on macro-and microstructure evolution during solidification of an Al–4.5% Cu alloy. Mater. Sci. Eng. A 413, 98–104 (2005)CrossRefGoogle Scholar
  17. 17.
    Y. Yamagishi, H. Takeuchi, A.T. Pyatenko, et al., Characteristics of microencapsulated PCM slurry as a heat–transfer fluid. AICHE J. 45(4), 696–707 (1999)CrossRefGoogle Scholar
  18. 18.
    J.L. Alvarado, C. Marsh, C. Sohn, et al., Thermal performance of microencapsulated phase change material slurry in turbulent flow under constant heat flux. Int. J. Heat Mass Transf. 50, 1938–1952 (2007)CrossRefGoogle Scholar
  19. 19.
    S. Wenji, X. Rui, H. Chong, et al., Experimental investigation on TBAB clathrate hydrate slurry flows in a horizontal tube: Forced convective heat transfer behaviors. Int. J. Refrig. 32(7), 1801–1807 (2009)CrossRefGoogle Scholar
  20. 20.
    G.M. Poole, N. El-Kaddah, An improved model for the flow in an electromagnetically stirred melt during solidification. Metall. Mater. Trans. B 44(6), 1531–1540 (2013)CrossRefGoogle Scholar
  21. 21.
    R. Nadella, D.G. Eskin, Q. Du, L. Katgerman, Macrosegregation in direct-chill casting of aluminium alloys. Prog. Mater. Sci. 53(3), 421–480 (2008)CrossRefGoogle Scholar
  22. 22.
    C.J. Vreeman, M.J.M. Krane, F.P. Incropera, The effect of free-floating dendrites and convection on macrosegregation in direct chill cast aluminum alloys: part I: model development. Int. J. Heat Mass Transf. 43(5), 677–686 (2000)CrossRefGoogle Scholar
  23. 23.
    S. Chang, D.M. Stefanescu, A model for macrosegregation and its application to Al-Cu castings. Metall. Mater. Trans. A 27(9), 2708–2721 (1996)CrossRefGoogle Scholar
  24. 24.
    P. Rousset, M. Rappaz, B. Hannart, Modeling of inverse segregation and porosity formation in directionally solidified aluminum alloys. Metall. Mater. Trans. A 26(9), 2349–2358 (1995)CrossRefGoogle Scholar
  25. 25.
    A.V. Reddy, N.C. Beckermann, Modeling of macrosegregation due to thermosolutal convection and contraction-driven flow in direct chill continuous casting of an Al-Cu round ingot. Metall. Mater. Trans. B 28(3), 479–489 (1997)CrossRefGoogle Scholar
  26. 26.
    S.N. Tewari, R. Shah, Macrosegregation during dendritic arrayed growth of hypoeutectic Pb-Sn alloys: Influence of primary arm spacing and mushy zone length. Metall. Mater. Trans. A 27(5), 1353–1362 (1996)CrossRefGoogle Scholar
  27. 27.
    H.J. Thevik, A. Mo, The influence of micro-scale solute diffusion and dendrite coarsening upon surface macrosegregation. Int. J. Heat Mass Transf. 40(9), 2055–2065 (1997)CrossRefGoogle Scholar
  28. 28.
    D.G. Eskin, R. Nadella, L. Katgerman, Effect of different grain structures on centerline macrosegregation during direct-chill casting. Acta Mater. 56(6), 1358–1365 (2008)CrossRefGoogle Scholar
  29. 29.
    B. Zhang, J. Cui, G. Lu, Effect of low-frequency magnetic field on macrosegregation of continuous casting aluminum alloys. Mater. Lett. 57(11), 1707–1711 (2003)CrossRefGoogle Scholar
  30. 30.
    C. Vives, Electromagnetic refining of aluminum alloys by the CREM process: part I. Working principle and metallurgical results. Metall. Trans. B 20(5), 623–629 (1989)CrossRefGoogle Scholar
  31. 31.
    T. Alboussiere, A.C. Neubrand, J.P. Garandet, et al., Segregation during horizontal Bridgman growth under an axial magnetic field. J. Cryst. Growth 181(1-2), 133–144 (1997)CrossRefGoogle Scholar
  32. 32.
    C.J. Vreeman, F.P. Incropera, The effect of free-floating dendrites and convection on macrosegregation in direct chill cast aluminum alloys: part II: predictions for Al–Cu and Al–Mg alloys. Int. J. Heat Mass Transf. 43(5), 687–704 (2000)CrossRefGoogle Scholar
  33. 33.
    J. Dong, Z. Zhao, J. Cui, et al., Effect of low-frequency electromagnetic casting on the castability, microstructure, and tensile properties of direct-chill cast Al-Zn-Mg-Cu alloy. Metall. Mater. Trans. A 35, 2487 (2004)CrossRefGoogle Scholar
  34. 34.
    D.D. Chen, H.T. Zhang, X.J. Wang, et al., Study on micro segregation of low frequency electromagnetic casting Al-4.5% Cu alloy. Acta Metall. Sin. 47(2), 185–190 (2011)Google Scholar
  35. 35.
    A. Hellawell, S. Liu, S.Z. Lu, Dendrite fragmentation and the effects of fluid flow in castings. JOM 49(3), 18–20 (1997)CrossRefGoogle Scholar
  36. 36.
    H. Hao, X.G. Zhang, J.P. Park, et al., Twin-strand technology and microstructure analysis for the electromagnetic near net-shape casting of aluminum alloy. J. Mater. Process. Technol. 142(2), 526–531 (2003)CrossRefGoogle Scholar
  37. 37.
    X. Li, Z. Guo, X. Zhao, et al., Continuous casting of copper tube billets under rotating electromagnetic field. Mater. Sci. Eng. A 460, 648–651 (2007)CrossRefGoogle Scholar
  38. 38.
    B. Zhang, J. Cui, G. Lu, Effects of low-frequency electromagnetic field on microstructures and macrosegregation of continuous casting 7075 aluminum alloy. Mater. Sci. Eng. A 355(1-2), 325–330 (2003)CrossRefGoogle Scholar
  39. 39.
    Y. Zuo, J. Cui, J. Dong, et al., Effects of low frequency electromagnetic field on the as-cast microstructures and mechanical properties of superhigh strength aluminum alloy. Mater. Sci. Eng. A 408(1), 176–181 (2005)CrossRefGoogle Scholar
  40. 40.
    Z. Zhao, J. Cui, J. Dong, et al., Effect of low-frequency magnetic field on microstructures of horizontal direct chill casting 2024 aluminum alloy. J. Alloys Compd. 396(1), 164–168 (2005)CrossRefGoogle Scholar
  41. 41.
    Z. Yan, X. Li, Z. Cao, et al., Grain refinement of horizontal continuous casting of the CuNi10Fe1Mn alloy hollow billets by rotating magnetic field (RMF). Mater. Lett. 62(28), 4389–4392 (2008)CrossRefGoogle Scholar
  42. 42.
    B. Willers, S. Eckert, U. Michel, et al., The columnar-to-equiaxed transition in Pb-Sn alloys affected by electromagnetically driven convection. Mater. Sci. Eng. A 402(1-2), 55–65 (2005)CrossRefGoogle Scholar
  43. 43.
    W.D. Griffiths, D.G. McCartney, The effect of electromagnetic stirring on macrostructure and macrosegregation in the aluminum alloy 7150. Mater. Sci. Eng. A 222(2), 140–148 (1997)CrossRefGoogle Scholar
  44. 44.
    Y. Zuo, J. Cui, Z. Zhao, H. Zhang, L. Li, Q. Zhu, Mechanism of grain refinement of an Al–Zn–Mg–Cu alloy prepared by low-frequency electromagnetic casting. J. Mater. Sci. 47, 5501–5508 (2012)CrossRefGoogle Scholar
  45. 45.
    J. Pilling, A. Hellawell, Mechanical deformation of dendrites by fluid flow. Metall. Mater. Trans. A 27(1), 229–232 (1996)CrossRefGoogle Scholar
  46. 46.
    R.H. Mathiesen, L. Arnberg, P. Bleuet, et al., Crystal fragmentation and columnar-to-equiaxed transitions in Al-Cu studied by synchrotron X-ray video microscopy. Metall. Mater. Trans. A 37(8), 2515–2524 (2006)CrossRefGoogle Scholar
  47. 47.
    D. Ruvalcaba, R.H. Mathiesen, D.G. Eskin, et al., In situ observations of dendritic fragmentation due to local solute-enrichment during directional solidification of an aluminum alloy. Acta Mater. 55(13), 4287–4292 (2007)CrossRefGoogle Scholar
  48. 48.
    A.L. Greer, A.M. Bunn, A. Tronche, et al., Modelling of inoculation of metallic melts: application to grain refinement of aluminum by Al–Ti–B. Acta Mater. 48(11), 2823–2835 (2000)CrossRefGoogle Scholar
  49. 49.
    A. Ohno, Application of the Separation Theory. Solidification: The Separation Theory and its Practical Applications (Springer, Berlin, 1987), pp. 83–118Google Scholar
  50. 50.
    W.W. Mullins, R.F. Sekerka, Morphological stability of a particle growing by diffusion or heat flow. J. Appl. Phys. 34(2), 323–329 (1963)CrossRefGoogle Scholar
  51. 51.
    Q.F. Zhu, Z.H. Zhao, Y.B. Zuo, et al., The effect of the combination of electromagnetic field on the surface quality and inner structure of HDC casting Al 3004 ingot. J. Iron Steel Res. Int. 19, 322–326 (2012)Google Scholar
  52. 52.
    G.I. Eskin, D.G. Eskin, Ultrasonic Treatment of Light Alloy Melts, 2nd edn. (CRC Press, Boca Raton, 2015)Google Scholar
  53. 53.
    B.D. Goel, D.P. Shukla, P.C. Pandey, Effect of vibration during solidification on grain refinement in aluminum alloys. Trans. Indian Inst. Metals 33(3), 196–199 (1980)Google Scholar
  54. 54.
    J. Campbell, Effects of vibration during solidification. Int. Metals Rev. 26(1), 71–108 (1981)Google Scholar
  55. 55.
    O.V. Abramov, Ultrasound in Liquid and Solid Metals (CRC Press, Boca Raton, 1994)Google Scholar
  56. 56.
    D. Jarvis, V. Bojarevics, K. Pericleous et al., European Patent 13756442.3-1373, 2016Google Scholar
  57. 57.
    V. Bojarevics, G.S. Djambazov, K.A. Pericleous, Metall. Mater. Trans. A 46(7), 2884–2892 (2015)CrossRefGoogle Scholar
  58. 58.
    C. Vivès, Effects of forced electromagnetic vibrations during the solidification of aluminum alloys: part II. Solidification in the presence of colinear variable and stationary magnetic fields. Metall. Mater. Trans. B 27B(3), 457–464 (1996)CrossRefGoogle Scholar
  59. 59.
    C. Vivès, Effects of forced electromagnetic vibrations during the solidification of aluminum alloys: part I. Solidification in the presence of crossed alternating electric fields and stationary magnetic fields. Metall. Mater. Trans. B 27B(3), 445–455 (1996)CrossRefGoogle Scholar
  60. 60.
    H.J. Thevik, A. Mo, T. Rusten, A mathematical model for surface segregation in aluminum direct chill casting. Metall. Mater. Trans. B 30B(1), 135–142 (1999)CrossRefGoogle Scholar
  61. 61.
    A.K. Dahle, D.H. StJohn, Rheological behaviour of the mushy zone and its effect on the formation of casting defects during solidification. Acta Mater. 47(1), 31–41 (1998)CrossRefGoogle Scholar
  62. 62.
    D.G. Eskin, Suyitno, L. Katgerman, Mechanical properties in the semi-solid state and hot tearing of aluminum alloys. Prog. Mater. Sci. 49(5), 629–711 (2004)Google Scholar
  63. 63.
    D.G. Eskin, Suyitno, J.F. Mooney, L. Katgerman, Contraction of aluminum alloys during and after solidification. Metall. Mater. Trans. A 35A(4), 1325–1335 (2004)CrossRefGoogle Scholar
  64. 64.
    D. Jie, C. Jianzhong, D. Wenjiang, Theoretical discussion of the effect of a low-frequency electromagnetic vibrating field on the as-cast microstructures of DC Al–Zn–Mg–Cu–Zr ingots. J. Cryst. Growth 295(2), 179–187 (2006)CrossRefGoogle Scholar
  65. 65.
    Z.N. Getselev, G.A. Balakhontsev, F.I. Kvasov, G.V. Cherepok, I.I. Varga, G.I. Martynov, Continuous Casting in Electromagnetic Mold (Metallurgiya, Moscow, 1983)Google Scholar
  66. 66.
    J. Dong, J. Cui, X. Zeng, et al., Effect of low-frequency electromagnetic field on microstructures and macrosegregation of Φ270 mm DC ingots of an Al–Zn–Mg–Cu–Zr alloy. Mater. Lett. 59(12), 1502–1506 (2005)CrossRefGoogle Scholar
  67. 67.
    Z. Yubo, C. Jianzhong, Z. Zhihao, et al., Effect of low frequency electromagnetic field on casting crack during DC casting superhigh strength aluminum alloy ingots. Mater. Sci. Eng. A 406(1), 286–292 (2005)CrossRefGoogle Scholar
  68. 68.
    Z.H. Zhao, Study on the Technology and Theory of Horizontal Direct Chill Casting Process of Light Alloys Under Low-Frequency Electromagnetic Field (Northeastern University, Shenyang, 2005)Google Scholar
  69. 69.
    J.Z. Cui, Z.F. Wang, Z.H. Zhao, Method and apparatus for DC casting of hollow billets under electromagnetic fields: China, ZL200510046854.4, 2005 (in Chinese)Google Scholar
  70. 70.
    J.Z. Cui, K. Qin, F.X. Yu, Method and apparatus for electromagnetic modifying of hypereutectic Al-Si alloys: China, ZL2004410087637.5, 2004 (in Chinese)Google Scholar
  71. 71.
    J.Z. Cui, F. Qu, Z.H. Zhao, Method and apparatus for air film casting under static magnetic field: China, ZL20081001257.4, 2008 (in Chinese)Google Scholar
  72. 72.
    H. Zhang, J. Cui, H. Nagaumi, A New Approach to Producing Large-Size AA7055 Aluminum Alloy Ingots, Light Metals 2012 (TMS/Springer, New York, 2012), pp. 333–337Google Scholar
  73. 73.
    Z. Zhang, Q. Le, J. Cui, Structure and mechanical properties of AZ31 magnesium alloy billets by different hot-top semi-continuous casting technology. J. Rare Metals 30, 414 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jianzhong Cui
    • 1
  • Haitao Zhang
    • 1
    Email author
  • Lei Li
    • 1
  • Yubo Zuo
    • 1
  • Hiromi Nagaumi
    • 2
  1. 1.Key Lab of Electromagnetic Processing of MaterialsMinistry of Education, Northeastern UniversityShenyangChina
  2. 2.School of Iron and SteelSoochow UniversitySuzhouChina

Personalised recommendations