Skip to main content

Magnetohydrodynamics Processing and Modeling

  • Chapter
  • First Online:
Solidification Processing of Metallic Alloys Under External Fields

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 273))

  • 1012 Accesses

Abstract

Magnetohydrodynamics (MHD) is the scientific field devoted to studying the interaction between electric or magnetic fields and fluid flow in electrically conducting liquids. MHD phenomena appear in a wide range of metal processing applications, either as an unintended consequence of the presence of electric currents during processing or by the deliberate application of external magnetic fields or currents to a process. The allied field of Electromagnetic Processing of Materials (EPM) has many applications, ranging from melting, flow control, melt cleaning, stirring, arc processes (welding, AM, vacuum arc remelting) and electrolytic processes, including recently the field of liquid metal batteries for renewable energy storage. In terms of modeling and simulation, EPM remains a difficult task to master, since in addition to the usual flow, heat transfer, and solidification, one has to address the coupled electric and magnetic fields, often in a dynamic fashion. In this chapter, we divide applications in terms of applied current type, i.e. DC (aluminum electrolysis, vacuum arc remelting) or AC (EM levitation, induction crucibles, PV silicon kerf recycling and the contactless ultrasonic vibration of melts).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.M. Hall, US patent 400664, Process of reducing aluminum from its fluoride salts by electrolysis, issued 1889-04-02

    Google Scholar 

  2. P. Héroult, French patent no. 175,711 (filed: 23 April 1886; issued: 1 September 1886)

    Google Scholar 

  3. Ferranti, British Patent 700 of 1887 on induction furnaces

    Google Scholar 

  4. H.K. Moffatt, On the suppression of turbulence by a uniform magnetic field. J. Fluid Mech. 28, 571–592 (1967)

    Article  Google Scholar 

  5. J. Sommeria, R. Moreau, Why, how, and when MHD turbulence becomes two-dimensional. J. Fluid Mech. 118, 507–518 (1982)

    Article  Google Scholar 

  6. G. Djambazov, V. Bojarevics, K. Pericleous, M. Forzan, Numerical modeling of silicon melt purification in induction directional solidification system. Int. J. Appl. Electromagn. Mech. 53(S1), S95–S102 (2017)

    Article  Google Scholar 

  7. H.K. Moffatt, A. Sellier, Migration of an insulating particle under the action of uniform ambient electric and magnetic fields. Part 1. General theory. J. Fluid Mech. 464, 279–286 (2002)

    Article  Google Scholar 

  8. S. Taniguchi, N. Yoshikawa, K. Takahashi, Application of EPM to the separation of inclusion particles from liquid metal, in The 15th Riga and 6th PAMIR Conference on Fundamental and Applied MHD, ed. by A. Alemany, (Salaspils Institute of Physics, Riga, 2005), p. 55

    Google Scholar 

  9. S. Asai, Overview of electromagnetic processing of materials, in Magnetohydrodynamics Historical Evolution and Trends, ed. by S. Molokov et al., (Springer, Berlin, 2007), pp. 315–317

    Google Scholar 

  10. P.A. Davidson, An Introduction to Magnetohydrodynamics (Cambridge University Press, Cambridge, 2001)

    Book  Google Scholar 

  11. O. Zikanov, A. Thess, Direct numerical simulation of forced MHD turbulence at low magnetic Reynolds number. J. Fluid Mech. 358, 299–333 (1998)

    Article  Google Scholar 

  12. K. Cukierski, B.G. Thomas, Flow control with local electromagnetic braking in continuous casting of steel slabs. Metall. Mater. Trans. B 39B, 94–107 (2008)

    Article  CAS  Google Scholar 

  13. H. Kobatake, H. Fukuyama, I. Minato, T. Tsukada, S. Awaji, Noncontact modulated laser calorimetry of liquid silicon in a static magnetic field. J. Appl. Phys. 104, 054901 (2008)

    Article  Google Scholar 

  14. A. Kao, J. Gao, H. Mengkun, K. Pericleous, D.V. Alexandrov, P.K. Galenko, Dendritic growth velocities in an undercooled melt of pure nickel under static magnetic fields: A test of theory with convection. Acta Mater. 103, 184–191 (2015)

    Google Scholar 

  15. C. Bailey, P. Chow, M. Cross, Y. Fryer, K. Pericleous, Multiphysics modeling of the metals casting process. Proc. R. Soc. A 452(1946), 459–486 (1996)

    Article  Google Scholar 

  16. S. Bounds, G. Moran, K. Pericleous, M. Cross, T.N. Croft, A computational model for defect prediction in shape castings based on the interaction of free surface flow, heat transfer, and solidification phenomena. Metall. Mater. Trans. B 31(3), 515–527 (2000)

    Article  Google Scholar 

  17. N. Urata, K. Mori, H. Ikeuchi, Behavior of bath and molten metal in aluminum electrolytic cell. Keikinzoku 26(11), 573–600 (1976)

    CAS  Google Scholar 

  18. G. Lossman, in Light Metals 1992, ed. by E. R. Cutshall, (The Minerals Metals and Materials Society, Warrendale, PA, 1992), pp. 441–447

    Google Scholar 

  19. C. Droste, M. Segatz, D. Vogelsang, in Light Metals 1998, ed. by B. Welch, (The Minerals Metals and Materials Society, Warrendale, PA, 1998), pp. 419–428

    Google Scholar 

  20. V. Bojarevics, J.W. Evans, Mathematical modeling of Hall-Héroult pot instability and verification by measurements of anode current distribution, in Proceedings of TMS Light Metals, (2015), pp. 783–788

    Google Scholar 

  21. V. Bojarevics, M.V. Romerio, Long waves instability of liquid metal-electrolyte interface in aluminum electrolysis cells: A generalization of Sele’s criterion. Eur. J. Mech. B Fluids 13(1), 33–56 (1994)

    Google Scholar 

  22. V. Bojarevics, K. Pericleous, Solutions for the metal-bath interface in aluminum electrolysis cells, in Proceedings of TMS Light Metals, (2009), pp. 569–574

    Google Scholar 

  23. R. Von Kaenel, J.P. Antille, Magnetohydrodynamic stability in alumina reduction cells. Travaux 23(27), 285–297 (1996)

    Google Scholar 

  24. B. Li, F. Wang, X. Zhang, F. Qi, N. Feng, Development and application of an energy saving technology for aluminum reduction cells, in Proceedings of TMS Light Metals, (2012), pp. 865–868

    Google Scholar 

  25. D. Leenov, A. Kolin, Theory of electromagnetophoresis. J. Chem. Phys. 22(4), 683–688 (1954)

    Article  CAS  Google Scholar 

  26. V. Bojarevics, A. Roy, Effect of magnetic forces on bubble transport and MHD stability of aluminum electrolysis cells. Magnetohydrodynamics 48(1), 125–136 (2012)

    Google Scholar 

  27. K. Pericleous, G. Djambazov, R.M. Ward, L. Yuan, P.D. Lee, A multiscale 3D model of the vacuum arc remelting process. Metall. Mater. Trans. A 44(12), 5365–5376 (2013)

    Article  CAS  Google Scholar 

  28. P. Chapelle, A. Jardy, J. Bellot, M. Minvielle, Effect of electromagnetic stirring on melt pool free surface dynamics during vacuum arc remelting. J. Mater. Sci. 43(17), 5734–5746 (2008)

    Article  CAS  Google Scholar 

  29. R.M. Ward, M.H. Jacobs, Electrical and magnetic techniques for monitoring arc behaviour during VAR of INCONEL1 718: Results from different operating conditions. J. Mater. Sci. 39, 7135–7143 (2004)

    Article  CAS  Google Scholar 

  30. R.M. Ward, B. Daniel, R.J. Siddall, Ensemble arc motion and solidification during the vacuum arc remelting of a nickel-based superalloy, in Proc. Int. Symp. Liquid Metal Processing and Casting, Santa Fe, (2005), pp. 49–56

    Google Scholar 

  31. W. Zhang, P.D. Lee, M. McLean, Numerical simulation of dendrite white spot formation during vacuum arc remelting of INCONEL718. Metall. Mater. Trans. A 33(2), 443–454 (2002)

    Article  Google Scholar 

  32. L. Yuan, P.D. Lee, A new mechanism for freckle initiation based on microstructural level simulation. Acta Mater. 60(12), 4917–4926 (2012)

    Article  CAS  Google Scholar 

  33. W. Wang, P.D. Lee, M. McLean, A model of solidification microstructures in nickel-based superalloys: Predicting primary dendrite spacing selection. Acta Mater. 51(10), 2971–2987 (2003)

    Article  CAS  Google Scholar 

  34. P.D. Lee, A. Chirazi, R.C. Atwood, W. Wang, Multiscale modeling of solidification microstructures, including microsegregation and microporosity, in an Al–Si–Cu alloy. Mater. Sci. Eng. A 365(1–2), 57–65 (2004)

    Article  Google Scholar 

  35. X. Xu, R.M. Ward, M.H. Jacobs, P.D. Lee, M. McLean, Tree-ring formation during vacuum arc remelting of INCONEL 718: Part I. Experimental investigation. Metall. Mater. Trans. A 33A(6), 1795–1804 (2002)

    Article  CAS  Google Scholar 

  36. J.C. Ramirez, C. Beckermann, Evaluation of a Rayleigh-number-based freckle criterion for Pb-Sn alloys and Ni-Base Superalloys. Metall. Mater. Trans. A 34A, 1525 (2003)

    Article  CAS  Google Scholar 

  37. T.M. Pollock, W.H. Murphy, The breakdown of single-crystal solidification in high refractory nickel-base alloys. Metall. Mater. Trans. A 27A, 1081 (1996)

    Article  Google Scholar 

  38. I. Egry, G. Lohofer, I. Seyhan, S. Schneider, B. Feuerbacher, Viscosity and surface tension measurements in microgravity. Int. J. Thermophys. 20(4), 1005–1015 (1999)

    Article  CAS  Google Scholar 

  39. H. Kobatake, H. Fukuyama, I. Minato, T. Tsukada, S. Avaji, Noncontact measurement of thermal conductivity of liquid silicon in a static magnetic field. Appl. Phys. Lett. 90, 094102 (2007)

    Article  Google Scholar 

  40. V. Bojarevics, K. Pericleous, Modeling electromagnetically levitated liquid droplet oscillations. ISIJ Int. 43(6), 890–898 (2003)

    Article  CAS  Google Scholar 

  41. K. Pericleous, V. Bojarevics, A. Roy, Modeling of EML in combined AC/DC magnetic fields as the basis for microgravity experiments. Int. J. Microgravity Sci. Appl. 30(1), 56–63 (2013)

    Google Scholar 

  42. J. Priede, Oscillations of weakly viscous conducting liquid drops in a strong magnetic field. J. Fluid Mech. 671, 399–416 (2010)

    Article  Google Scholar 

  43. V. Bojarevics, E. Beaugnon, Magnetic levitation of weakly conducting liquid droplets, in Proceedings of 9th Int. Conference MHD PAMIR, vol. 1, (University of Latvia, Riga, 2014), pp. 358–362

    Google Scholar 

  44. D.C. Wilcox, Turbulence Modeling for CFD, 2nd edn. (DCW Industries, California, 1998)

    Google Scholar 

  45. O. Widlund, Modeling of magnetohydrodynamic turbulence, Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden, ISSN 0348-467X, 2000

    Google Scholar 

  46. V. Bojarevics, K. Pericleous, Dual frequency AC and DC magnetic field levitation melting of metals. Int. J. Appl. Electromagn. Mech. 44, 147–153 (2014)

    Google Scholar 

  47. L. Rayleigh, On the capillary phenomena of jets. Proc. R. Soc. Lond. A 29, 71–97 (1879)

    Article  Google Scholar 

  48. E. Beaugnon, D. Fabregue, D. Billy, J. Nappa, R. Tournier, Dynamics of magnetically levitated droplets. Physica B 294–295, 715–720 (2001)

    Article  Google Scholar 

  49. S. Easter, V. Bojarevics, K. Pericleous, Numerical modeling of liquid droplet dynamics in microgravity. J. Phys. Conf. Ser. 327, 012027 (2011)

    Article  Google Scholar 

  50. H. Tadano, M. Fujita, T. Take, K. Nagamatsu, A. Fukuzawa, Levitational melting of several kilograms of metal with a cold crucible. IEEE Trans. Magn. 30(6), 4740–4742 (1994)

    Article  Google Scholar 

  51. T. Okumura, K. Yamamoto, M. Shibata, Large scale cold crucible levitation melting furnace with bottom tapping nozzle, in Proc. 6th Internat. Conf. Electromagnetic Processing Materials, (Forschungszentrum Dresden-Rossendorf, Dresden, 2009), pp. 521–524

    Google Scholar 

  52. E. Baake, S. Spitans, A. Jakovičs, New technology for EM levitation melting of metals, in The Proc. of Int. Conf. Heating by Electromag. Sources HES-13 – Padua, Italy, 21–24 May, (2013), pp. 1–8

    Google Scholar 

  53. L. Baptiste, N. van Landschoot, G. Gleijm, J. Priede, J. Schade van Westrum, H. Velthuis, T.-Y. Kim, Electromagnetic levitation: A new technology for high rate physical vapour deposition of coatings onto metallic strip. Surf. Coat. Technol. 202, 1189–1193 (2007)

    Article  CAS  Google Scholar 

  54. N. El-Kaddah, T.S. Piwonka, J.T. Berry US Patent Number 5033948, 1991

    Google Scholar 

  55. V. Bojarevics, K. Pericleous, M. Cross, Modeling the dynamics of magnetic semi-levitation melting. Metall. Mater. Trans. B 31, 179–189 (2000)

    Article  Google Scholar 

  56. V. Bojarevics, R.A. Harding, K. Pericleous, M. Wickins, The development and validation of a numerical model of an induction skull melting furnace. Metall. Mater. Trans. B 35B, 785–803 (2004)

    Article  CAS  Google Scholar 

  57. R.A. Harding, M. Wickins, G. Keough, K. Pericleous, V. Bojarevics, The use of combined DC and AC fields to increase superheat in an induction skull melting furnace, in Proc. 2005 Int. Symp. Liquid Metal Processing and Casting, (Santa Fe), pp. 201–210

    Google Scholar 

  58. B. Ceccaroli, E. Ovrelid, S. Pizzini (eds.), Solar Silicon Processes: Technologies, Challenges, and Opportunities (CRC Press, London, 2017)

    Google Scholar 

  59. SIKELOR, Silicon kerf loss recycling, www.sikelor.eu

  60. F. Dughiero, M. Forzan, D. Ciscato, F. Giusto, Multi-crystalline silicon ingots growth with an innovative induction heating directional solidification furnace, in 37th IEEE Photovoltaic Specialists Conference, IEEE 978-1-4244-9965-6, (2011)

    Google Scholar 

  61. EAAT, Elektrische Automatisierungs- und Antriebstechnik GmbH Chemnitz, http://www.eaat.de/en/

  62. G. Djambazov, V. Bojarevics, K. Pericleous, M. Forzan, Numerical modeling of silicon melt purification in induction directional solidification system. Int. J. Appl. Electromagn. Mech. 53(S1), S95–S102 (2017)

    Article  Google Scholar 

  63. G.I. Eskin, D.G. Eskin, Ultrasonic Treatment of Light Alloy Melts, 2nd edn. (CRC Press, Boca Raton, 2015)

    Google Scholar 

  64. T. Meek, X. Jian, H. Xu, Q. Han. Ultrasonic processing of materials, ORNL/TM-2005/125, 2006

    Google Scholar 

  65. I. Tzanakis, W.W. Xu, G. Lebon, D.G. Eskin, K. Pericleous, P.D. Lee, In situ synchrotron radiography and spectrum analysis of transient cavitation bubbles in molten aluminium alloy. Phys. Procedia 70, 841 (2015)

    Article  CAS  Google Scholar 

  66. D. Jarvis, V. Bojarevics, K. Pericleous, et al., European Patent 13756442.3-1373, 2016

    Google Scholar 

  67. V. Bojarevics, G. Djambazov, K. Pericleous, Contactless ultrasound generation in a crucible. Metall. Mater. Trans. A 46(7), 2884–2892 (2015)

    Article  CAS  Google Scholar 

  68. C. Vives, Crystallization of aluminium alloys in the presence of cavitation phenomena induced by a vibrating electromagnetic pressure. J. Cryst. Growth 158(1–2), 118 (1996)

    Article  CAS  Google Scholar 

  69. I. Grants et al., Contactless magnetic excitation of acoustic cavitation in liquid metals. J. Appl. Phys. 117, 204901 (2015)

    Article  Google Scholar 

  70. W.D. Griffiths et al., The use of positron emission particle tracking (PEPT) to study the movement of inclusions in low-melting-point alloy castings. Metall. Mater. Trans. B 43B, 370–378 (2012)

    Article  Google Scholar 

  71. C. Canuto et al., Spectral Methods in Fluid Dynamics (Springer, Berlin, 1998)

    Google Scholar 

  72. K. Pericleous, V. Bojarevics, Pseudo-spectral solutions for fluid flow and heat transfer in electro-metallurgical applications. Prog. Comput. Fluid Dyn. 7(2/3/4), 118–127 (2007)

    Article  Google Scholar 

  73. G. Djambazov et al., Staggered-mesh computation for aerodynamic sound. AIAA J. 38(1), 16–21 (2000)

    Article  Google Scholar 

  74. G.S.B. Lebon, K. Pericleous, I. Tzanakis, D. Eskin, A model of cavitation for the treatment of a moving liquid metal volume. Int. J. Cast Met. Res. 29, 324–330 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koulis A. Pericleous .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pericleous, K.A., Bojarevics, V., Djambazov, G.S. (2018). Magnetohydrodynamics Processing and Modeling. In: Eskin, D., Mi, J. (eds) Solidification Processing of Metallic Alloys Under External Fields. Springer Series in Materials Science, vol 273. Springer, Cham. https://doi.org/10.1007/978-3-319-94842-3_3

Download citation

Publish with us

Policies and ethics