In Situ Studies of the Solidification Dynamics of Metal Alloys

  • Jiawei MiEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 273)


Since the 1990s, tens of 3rd generation synchrotron X-ray facilities have been built around the world and made available for research in almost all scientific disciplines. The high brilliance, high coherence and tunable energy of synchrotron X-rays allow researchers in physical and biological science to probe many new dynamic processes in spatial and temporal resolution that are not possible before. This chapter firstly gives a brief review of the advances of X-ray science and the fundamental laws governing the interactions of X-rays with matter, and then focuses on a critical review and discussion of state of the art real-time and in situ studies of the solidification processes using synchrotron X-rays . The emphasis is on new scientific insights and discoveries in solidification science of metallic alloys, which are enabled by synchrotron X-rays based advanced real-time characterization techniques and the future challenges in this fast advancing research field. Although the knowledge, techniques, and practice described in Chap.  2 are generally in the context of solidification processes, they are applicable to many other materials syntheses and manufacturing processes. Readers are referred to the monographs or books published in the field of synchrotron science for broader topics, knowledge, and practice.


X-rays Synchrotron X-rays Free-electron laser X-ray radiography X-ray tomography X-ray diffraction X-ray scattering X-ray imaging X-ray diffraction imaging Ptychography Solidification Nucleation Grain growth Dendritic grains Intermetallic phases Liquid–solid interface In situ study Real-time study Phase field model 

Supplementary material

420435_1_En_2_MOESM1_ESM.avi (40.4 mb)
Video2.14a_For Fig2.14a (AVI 41354 KB)
420435_1_En_2_MOESM2_ESM.avi (388 kb)
Video2.25b_For Fig2.25b (AVI 388 KB)
420435_1_En_2_MOESM3_ESM.avi (14.3 mb)
Video2.25c_For Fig.2.25c (AVI 14598 KB)
420435_1_En_2_MOESM4_ESM.avi (3.9 mb)
Video2.25d_For Fig.2.25d (AVI 4021 KB) (294.2 mb)
Video2.35a_For Fig.2.35a (MOV 30125 KB) (136.2 mb)
Video2.35b_For Fig.2.35b (MOV 139461 KB)
420435_1_En_2_MOESM7_ESM.wmv (6.1 mb)
Video2.37b_For Fig.2.37b (WMV 6257 KB)


  1. 1.
    J. Maddox, The sensational discovery of X-ray. Nature 375, 183 (1995)CrossRefGoogle Scholar
  2. 2.
    J. Als-Nielsen, D. McMorrow, Elements of Modern X-Ray Physics, 2nd edn. (Wiley, Hoboken, 2011). ISBN 0470973943CrossRefGoogle Scholar
  3. 3.
    F.R. Elder, A.M. Gurewitsch, R.V. Langmuir, H.C. Pollock, Radiation from electrons in a synchrotron. Phys. Rev. 71, 829–830 (1947)CrossRefGoogle Scholar
  4. 4.
    Mobilio S., Boscherini F., Meneghini C. (eds), Synchrotron Radiation. (Springer, Berlin, Heidelberg, 2015). ISBN 978-3-642-55315-8Google Scholar
  5. 5.
    P. Willmott, An Introduction to Synchrotron Radiation: Techniques and Applications (Wiley, Hoboken, 2011)CrossRefGoogle Scholar
  6. 6.
    J.A. Seibert, J.M. Boone, X-ray imaging physics for nuclear medicine technologists. Part 2: X-ray interactions and image formation. J. Nucl. Med. Technol. 33(1), 3–18 (2005)Google Scholar
  7. 7.
    P.J. Brown, A.G. Fox, E.N. Maslen, M.A. O’Keefe, B.T.M. Willis, Intensity of diffracted intensities. Int Tables Crystallogr C, ch. 6.1, 554–595 (2006). Scholar
  8. 8.
    D. Turnbull, Theory of catalysis of nucleation by surface patches. Acta Metall. 1, 8–14 (1953)CrossRefGoogle Scholar
  9. 9.
    W.A. Tiller, K.A. Jackson, J.W. Rutter, B. Chalmers, The redistribution of solute atoms during the solidification of metals. Acta Metall. 1, 428–437 (1953)CrossRefGoogle Scholar
  10. 10.
    B. Chalmers, Principles of Solidification (Wiley, Hoboken, 1964)Google Scholar
  11. 11.
    H. Fredriksson, U. Akerlind, Solidification and Crystallization Processing in Metals and Alloys (Wiley, Hoboken, 2012)CrossRefGoogle Scholar
  12. 12.
    K.A. Jackson, J.D. Hunt, Transparent compounds that freeze like metals. Acta Metall. 13, 1212 (1965)CrossRefGoogle Scholar
  13. 13.
    M.E. Glicksman, R.J. Schaefer, J.D. Ayers, Dendritic growth – a test of theory. Metall. Trans. A. 7A, 1747–1759 (1976)CrossRefGoogle Scholar
  14. 14.
    D. Shu, B. Sun, J. Mi, P.S. Grant, High-speed imaging and numerical study of catastrophic fragmentation of dendrites due to ultrasonic cavitations during solidification. Metall. Mater. Trans. A 43A, 3755–3766 (2012)CrossRefGoogle Scholar
  15. 15.
    R.H. Mathiesen, L. Arnberg, F. Mo, T. Weitkamp, A. Snigirev, Time resolved X-ray imaging of dendritic growth in binary alloys. Phys. Rev. Lett. 83, 5062 (1999)CrossRefGoogle Scholar
  16. 16.
    J. Mi, R.A. Harding, J. Campbell, The tilt casting process. Int. J. Cast Metal. Res. 14(2002), 325–334 (2002)CrossRefGoogle Scholar
  17. 17.
    J. Mi, R.A. Harding, M. Wickins, J. Campbell, Entrained oxide films in TiAl castings. Intermetallics 11, 377–385 (2003)CrossRefGoogle Scholar
  18. 18.
    J. Mi, R.A. Harding, J. Campbell, Effects of the entrained surface film on the reliability of castings. Metall. Mater. Trans. A 35A, 2893–2902 (2004)CrossRefGoogle Scholar
  19. 19.
    R.H. Mathiesen, L. Arnberg, X-ray radiography observations of columnar dendritic growth and constitutional undercooling in an Al–30 wt.% Cu alloy. Acta Mater. 53, 947–956 (2005)CrossRefGoogle Scholar
  20. 20.
    A.J. Clarke, D. Tourret, Y. Song, S.D. Imhoff, A. Karma, Microstructure selection in thin-sample directional solidification of an Al-Cu alloy: In situ X-ray imaging and phase-field simulations. Acta Mater. 129, 203–216 (2017)CrossRefGoogle Scholar
  21. 21.
    J. Mi, D. Tan, T.L. Lee, In situ synchrotron X-ray study of ultrasound cavitation and its effect on solidification microstructures. Metall. Mater. Trans. B 46B, 1615–1619 (2015)CrossRefGoogle Scholar
  22. 22.
    D. Tan, T.L. Lee, J.C. Khong, T. Connolley, K. Fezzaa, J. Mi, High speed synchrotron X-ray imaging studies of the ultrasound shockwave and enhanced flow during metal solidification processes. Metall. Mater. Trans. A 46, 2851–2861 (2015)CrossRefGoogle Scholar
  23. 23.
    F. Wang, D. Eskin, J. Mi, C. Wang, T. Connolley, A synchrotron X-radiography study of the fragmentation and refinement of primary intermetallic particles in an Al-35 Cu alloy induced by ultrasonic melt processing. Acta Mater. 141, 142–153 (2017)CrossRefGoogle Scholar
  24. 24.
    B. Wang, D. Tan, T.L. Lee, j.C. Khong, J. Mi, Ultrafast synchrotron X-ray imaging studies of microstructure fragmentation in solidification under ultrasound. Acta Mater. 144, 505–515 (2018)CrossRefGoogle Scholar
  25. 25.
    E. Liotti, A. Lui, R. Vincent, S. Kumar, P.S. Grant, A synchrotron X-ray radiography study of dendrite fragmentation induced by a pulsed electromagnetic field in an Al–15Cu alloy. Acta Mater. 70, 228–239 (2014)CrossRefGoogle Scholar
  26. 26.
    T. Manuwong, W. Zhang, P.L. Kazinczi, A.J. Bodey, C. Rau, J. Mi, Solidification of metal alloys under electromagnetic pulses and characterization of 3D microstructures using synchrotron X-ray tomography. Metall. Mater. Trans. A 46, 2908–2915 (2015)CrossRefGoogle Scholar
  27. 27.
    W. Du, In-situ synchrotron X-ray imaging and tomography studies of the microstructural evolution in metal solidification under pulse electromagnetic fields, PhD Thesis (University of Hull, Hull) (2018)Google Scholar
  28. 28.
    A.B. Phillion, R.W. Hamilton, D. Fuloria, A.C.L. Leung, P.D. Lee, In situ X-ray observation of semi-solid deformation and failure in Al–Cu alloys. Acta Mater. 59, 1436–1444 (2011)CrossRefGoogle Scholar
  29. 29.
    J.W. Gibbs, K.A. Mohan, E.B. Gulsoy, A.J. Shahani, X. Xiao, C.A. Bouman, M. DeGraef, P.W. Voorhees, The three-dimensional morphology of growing dendrites. Sci. Rep. 5, 11824 (2015)CrossRefGoogle Scholar
  30. 30.
    B. Cai, S. Karagadde, L. Yuan, T.J. Marrow, P.D. Lee, In situ synchrotron tomographic quantification of granular and intragranular deformation during semi-solid compression of an equiaxed dendritic Al–Cu alloy. Acta Mater. 76, 371–380 (2014)CrossRefGoogle Scholar
  31. 31.
    W. Du, J. Mi, Synchrotron X-ray Studies of the Evolution of Solidification Microstructures Under Pulse Electromagnetic Field. The 9th International Symposium on Electromagnetic Processing of Materials (EPM2018) (Awaji City, Hyogo, Japan, 2018), pp. 14–18Google Scholar
  32. 32.
    N. Iqbal, N.H. van Dijk, S.E. Offerman, M.P. Moret, L. Katgerman, G.J. Kearley, Real-time observation of grain nucleation and growth during solidification of aluminium alloys. Acta Mater. 53, 2875–2880 (2005)CrossRefGoogle Scholar
  33. 33.
    O. Shuleshova, D. Holland-Moritz, W. Löser, A. Voss, B. Büchner, In situ observations of solidification processes in γ-TiAl alloys by synchrotron radiation. Acta Mater. 58, 2408–2418 (2010)CrossRefGoogle Scholar
  34. 34.
    C. Notthoff et al., Electromagnetic levitation apparatus for investigations of the phase selection in undercooled melts by energy-dispersive x-ray diffraction. Rev. Sci. Instrum. 71, 3791 (2000). Scholar
  35. 35.
    A.J. Brown, H.B. Dong, P.B. Howes, C.L. Nicklin, In situ observation of the orientation relationship at the interface plane between substrate and nucleus using X-ray scattering techniques. Scr. Mater. 77, 60–63 (2014)CrossRefGoogle Scholar
  36. 36.
    W. Zhang, Study of the Multi-Length Scale Structure of Metallic Glasses Using Synchrotron X-Rays and Phase-Field Crystal Modelling., PhD Thesis (University of Hull, Hull, 2016)Google Scholar
  37. 37.
    P.D. Lee, J.D. Hunt, Hydrogen porosity in directional solidified aluminium-copper alloys: In situ observation. Acta Mater. 45, 4155–4169 (1997)CrossRefGoogle Scholar
  38. 38.
    P.D. Lee, J.D. Hunt, Hydrogen porosity in directionally solidified aluminium–copper alloys: A mathematical model. Acta Mater. 49, 1383–1398 (2001)CrossRefGoogle Scholar
  39. 39.
    A. Bjurenstedt, D. Casari, S. Seifeddine, R.H. Mathiesen, A.K. Dahle, In-situ study of morphology and growth of primary α-Al(FeMnCr)Si intermetallics in an Al-Si alloy. Acta Mater. 130, 1–9 (2017)CrossRefGoogle Scholar
  40. 40.
    X. Yijiang, D. Casari, D. Qiang, R.H. Mathiesen, L. Arnberg, Y. Li, Heterogeneous nucleation and grain growth of inoculated aluminium alloys: An integrated study by in-situ X-radiography and numerical modelling. Acta Mater. 140, 224–239 (2017)CrossRefGoogle Scholar
  41. 41.
    H. Nguyen-Thi, L. Salvo, R.H. Mathiesen, L. Arnberg, G. Reinhart, On the interest of synchrotron X-ray imaging for the study of solidification in metallic alloys. C. R. Phys. 13(3), 237–245 (2012)CrossRefGoogle Scholar
  42. 42.
    S. Akamatsu, H. Nguyen-Thi, In situ observation of solidification patterns in diffusive conditions. Acta Mater. 108(15), 325–346 (2016)CrossRefGoogle Scholar
  43. 43.
    A. Bogno, H. Nguyen-Thi, A. Buffet, G. Reinhart, T. Schenk, Analysis by synchrotron X-ray radiography of convection effects on the dynamic evolution of the solid–liquid interface and on solute distribution during the initial transient of solidification. Acta Mater. 59(11), 4356–4365 (2011)CrossRefGoogle Scholar
  44. 44.
    A. Bogno, H. Nguyen-Thi, G. Reinhart, B. Billia, J. Baruchel, Growth and interaction of dendritic equiaxed grains: In situ characterization by synchrotron X-ray radiography. Acta Mater. 61(4), 1303–1315 (2013)CrossRefGoogle Scholar
  45. 45.
    C.M. Gourlay, K. Nogita, A.K. Dahle, Y. Yamamoto, H. Yasuda, In situ investigation of unidirectional solidification in Sn–0.7Cu and Sn–0.7Cu–0.06Ni. Acta Mater. 59(10), 4043–4054 (2011)CrossRefGoogle Scholar
  46. 46.
    N. Limodin, L. Salvo, E. Boller, M. Suéry, K. Madi, In situ and real-time 3-D microtomography investigation of dendritic solidification in an Al–10wt.% Cu alloy. Acta Mater. 57(7), 2300–2310 (2009)CrossRefGoogle Scholar
  47. 47.
    S. Terzi, L. Salvo, M. Suery, A.K. Dahle, E. Boller, Coarsening mechanisms in a dendritic Al–10% Cu alloy. Acta Mater. 58(1), 20–30 (2010)CrossRefGoogle Scholar
  48. 48.
    B. Cai, J. Wang, A. Kao, K. Pericleous, P.D. Lee, 4D synchrotron X-ray tomographic quantification of the transition from cellular to dendrite growth during directional solidification. Acta Mater. 117(15), 160–169 (2016)CrossRefGoogle Scholar
  49. 49.
    S. Shuai, E. Guo, A.B. Phillion, M.D. Callaghan, P.D. Lee, Fast synchrotron X-ray tomographic quantification of dendrite evolution during the solidification of MgSn alloys. Acta Mater. 118(1), 260–269 (2016)CrossRefGoogle Scholar
  50. 50.
    A.B. Enyu Guo, B.C. Phillion, S. Shuai, P.D. Lee, Dendritic evolution during coarsening of Mg-Zn alloys via 4D synchrotron tomography. Acta Mater. 123(15), 373–382 (2017)Google Scholar
  51. 51.
    M.A. Azeem, P.D. Lee, A.B. Phillion, S. Karagadde, D. Dye, Revealing dendritic pattern formation in Ni, Fe and Co alloys using synchrotron tomography. Acta Mater. 128(15), 241–248 (2017)CrossRefGoogle Scholar
  52. 52.
    S. Terzi, J.A. Taylor, Y.H. Cho, L. Salvo, A.K. Dahle, In situ study of nucleation and growth of the irregular α-Al/β-Al5FeSi eutectic by 3-D synchrotron X-ray microtomography. Acta Mater. 58(16), 5370–5380 (2010)CrossRefGoogle Scholar
  53. 53.
    J.M. Yu, N. Wanderka, A. Rack, R. Daudin, J. Banhart, Formation of intermetallic δ phase in Al-10Si-0.3Fe alloy investigated by in-situ 4D X-ray synchrotron tomography. Acta Mater. 129, 194–202 (2017)CrossRefGoogle Scholar
  54. 54.
    J.L. Fife, J.W. Gibbs, E.B. Gulsoy, C.-L. Park, P.W. Voorhees, The dynamics of interfaces during coarsening in solid–liquid systems. Acta Mater. 70(15), 66–78 (2014)CrossRefGoogle Scholar
  55. 55.
    T. Cool, P.W. Voorhees, The evolution of dendrites during coarsening: Fragmentation and morphology. Acta Mater. 127(1), 359–367 (2017)CrossRefGoogle Scholar
  56. 56.
    W. Zhang, A.J. Bodey, T. Sui, W. Kockelmann, C. Rau, A.M. Korsunsky, J. Mi, Multi-scale characterisation of the 3D microstructure of a thermally-shocked bulk metallic glass matrix composite. Sci. Rep. 6, 18545 (2016). Scholar
  57. 57.
    Y. Zhao, W. Du, B. Koe, T. Connolley, S. Irvine, P.K. Allan, C.M. Schlepütz, W. Zhang, F. Wang, D.G. Eskin, J. Mi, 3D characterisation of the Fe-rich intermetallic phases in recycled Al alloys by synchrotron X-ray microtomography and skeletonisation. Scr. Mater. 146, 321–326 (2018)CrossRefGoogle Scholar
  58. 58.
    Z. Guo, J. Mi, P.S. Grant, An implicit parallel multigrid computing scheme to solve coupled thermal-solute phase-field equations for dendrite evolution. J. Comput. Phys. 231(4), 1781–1796 (2012)CrossRefGoogle Scholar
  59. 59.
    Z. Guo, J. Mi, S. Xiong, P.S. Grant, Phase field simulation of binary alloy dendrite growth under thermal- and forced-flow fields: An implementation of the parallel–multigrid approach. Metall. Mater. Trans. B 44B, 924–937 (2013)CrossRefGoogle Scholar
  60. 60.
    Z. Guo, J. Mi, S. Xiong, P.S. Grant, Phase field study of the tip operating state of a freely growing dendrite against convection using a novel parallel multigrid approach. J. Comput. Phys. 257, 278–297 (2014)CrossRefGoogle Scholar
  61. 61.
    M. Yang, S.-M. Xiong, Z. Guo, Characterisation of the 3-D dendrite morphology of magnesium alloys using synchrotron X-ray tomography and 3-D phase-field modelling. Acta Mater. 92, 8–17 (2015)CrossRefGoogle Scholar
  62. 62.
    Z. Guo, S. M. Xiong, On solving the 3-D phase field equations by employing a parallel-adaptive mesh refinement (Para-AMR) algorithm, Computer Physics Communications, 190, 89–97 (2015)Google Scholar
  63. 63.
    C. Zhao, K. Fezzaa, R.W. Cunningham, H. Wen, F. De Carlo, L. Chen, A.D. Rollett, T. Sun, Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Sci. Rep. 7, 3602 (2017)CrossRefGoogle Scholar
  64. 64.
    H.J. Kirkwood, M.D. de Jonge, O. Muránsky, F. Hofmann, B. Abbey, Simultaneous X-ray diffraction, crystallography and fluorescence mapping using the Maia detector. Acta Mater. 144, 1–10 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Engineering and Computer Science, University of HullHullUK

Personalised recommendations