Basics of Solidification Processing of Metallic Alloys

  • Dmitry G. EskinEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 273)


The micro- and macrostructure of cast metal is very important from the point of view of casting and downstream processing performance, as it determines the quality of the casting and mechanical properties of as-cast and deformed products. Fine grain structure means uniform distribution of grain size in the billet (ingot) cross-section, elimination of columnar and feathery grains, lesser macrosegregation, uniform and improved mechanical properties in the semisolid and solid states, decreased propensity to hot and cold cracks, etc. Intermetallics and other excess inclusions (oxides, carbides, nitrides, borides, etc.) should also be fine and evenly distributed in the cast matrix. These inclusions are usually intrinsic to the metallic material and result from its composition or contamination. Sometimes, however, the foreign inclusions may be intentionally added to form a composite material or for the purpose of grain refining (acting as substrates).


  1. 1.
    K.F. Kelton, A.L. Greer, Nucleation in Condensed Matter: Applications in Materials in Biology (Elsevier, Amsterdam, 2010)Google Scholar
  2. 2.
    J.A. Dantzig, M. Rappaz, Solidification (EPFL Press/CRC Press, Lausanne, 2009)CrossRefGoogle Scholar
  3. 3.
    A.L. Greer, Solidification and Casting (Institute of Physics Publishing, Bristol, 2003), pp. 199–247Google Scholar
  4. 4.
    L. Northcott, J. Inst. Met. 62, 101–136 (1938); 65, 173–204 (1939)Google Scholar
  5. 5.
    A. Cibula, J. Inst. Met. 76, 321–360 (1950)Google Scholar
  6. 6.
    M.D. Eborall, J. Inst. Met. 76, 295–320 (1950)Google Scholar
  7. 7.
    T.E. Quested, A.T. Dinsdale, A.L. Greer, Acta Mater. 53, 1323–1334 (2005)CrossRefGoogle Scholar
  8. 8.
    M.A. Easton, D.H. St. John, Acta Mater. 49, 1867–1878 (2001)CrossRefGoogle Scholar
  9. 9.
    M.A. Easton, D.H. StJohn, Metall. Mater. Trans. A 30A, 1613–1623 (1999)CrossRefGoogle Scholar
  10. 10.
    B.S. Murty, S.A. Kori, M. Chakraborty, Int. Mater. Rev. 47, 3–29 (2002)CrossRefGoogle Scholar
  11. 11.
    D.H. St. John, M. Qian, A. Easton, P. Cao, Z. Hildebrand, Metall. Mater. Trans. A 36A, 1669–1679 (2005)CrossRefGoogle Scholar
  12. 12.
    J.D. Hunt, Mater. Sci. Eng. 65, 75–83 (1984)CrossRefGoogle Scholar
  13. 13.
    M. Rappaz, P. Thevos, Acta Metall. 35, 1487–1497 (1987)CrossRefGoogle Scholar
  14. 14.
    R.M. Mathiesen, L. Arnberg, Acta Mater. 53, 947–956 (2005)CrossRefGoogle Scholar
  15. 15.
    M.A. Martorano, C. Beckermann, C.-A. Gandin, Metall. Mater. Trans. A 34A, 1657–1674 (2005)Google Scholar
  16. 16.
    K. Jackson, J. Hunt, D. Uhlmann, T. Seward, Trans. Metall. Soc. AIME 236, 149–158 (1966)Google Scholar
  17. 17.
    D. Ruvalcaba, R. Mathiesen, D.G. Eskin, L. Arnberg, L. Katgerman, Acta Mater. 55, 4287–4292 (2007)CrossRefGoogle Scholar
  18. 18.
    D. Shu, B. Sun, J. Mi, P.S. Grant, Acta Mater. 59, 2135–2144 (2011)CrossRefGoogle Scholar
  19. 19.
    M. Johnsson, Z. Metallkde. 85, 781–785 (1994). 786–789Google Scholar
  20. 20.
    V.I. Dobatkin, R.M. Gabidullin, B.A. Kolachev, G.S. Makarov, Gases and Oxides in Aluminum Wrought Alloys (Metallurgiya, Moscow, 1976)Google Scholar
  21. 21.
    Z. Fan, Y. Wang, Z.F. Zhang, M. Xia, H.T. Li, J. Xu, L. Granasy, G.M. Scamans, Int. J. Cast Metals Res. 22(1–4), 318–322 (2009)CrossRefGoogle Scholar
  22. 22.
    G.I. Eskin, Ultrasonic Treatment of Light Alloy Melts (Gordon & Breach OPA, Amsterdam, 1998)CrossRefGoogle Scholar
  23. 23.
    D.H. StJohn, M.A. Easton, M. Qian, Solid State Phenom. 141–143, 355–360 (2008)Google Scholar
  24. 24.
    H. Men, B. Jiang, Z. Fan. Acta Mater. 58, 6526–6534 (2010)CrossRefGoogle Scholar
  25. 25.
    D. Qiu, M.-X. Zhang, J.A. Taylor, P.M. Kelly, Solidification Processing, ed by H. Jones. Proceedings of the 5th Decennial International Conference on Solidification Processing (University of Sheffield, Sheffield, 2007), pp. 153–158Google Scholar
  26. 26.
    C. Vivès, Metall. Mater. Trans. B 20B, 623–629 (1989). 631–643Google Scholar
  27. 27.
    X. Wang, H. Zhang, Y. Zuo, Z. Zhao, Q. Zhu, J. Cui, Mater. Sci. Eng. A 497, 416–420 (2008)CrossRefGoogle Scholar
  28. 28.
    Y. Zuo, H. Naganumi, J. Cui, J. Mater. Process. Technol. 197, 109–115 (2008)CrossRefGoogle Scholar
  29. 29.
    K. Murakami, T. Fujiyama, A. Koike, T. Okamoto, Acta Mater. 31, 1425–1432 (1983)CrossRefGoogle Scholar
  30. 30.
    A. Buchholz, S. Engler, Comput. Mater. Sci. 7, 221–227 (1996)CrossRefGoogle Scholar
  31. 31.
    M. Guo, Y. Yang, F. Hua, Z. Hu, Z. Metallkde. 95, 835–839 (2004)CrossRefGoogle Scholar
  32. 32.
    A.N. Turchin, Effects of Melt Flow in Casting Processes, PhD Thesis, Delft University of Technology, Delft, 2008Google Scholar
  33. 33.
    M.C. Flemings, C.M. Adams, E.E. Hucke, H.F. Taylor, AFS 64, 636–639 (1956)Google Scholar
  34. 34.
    L.L. Rishel, A Study of the Effect of a Unidirectional Bulk Flow on the Structure of Selected Aluminum-Copper Alloys. PhD thesis, University of Pittsburgh, USA, 1993Google Scholar
  35. 35.
    X. Li, Z. Ren, Y. Fautrelle, J. Mater. Process. Technol. 195, 125–134 (2008)CrossRefGoogle Scholar
  36. 36.
    S. Steinbach, L. Ratke, Mater. Sci. Eng. A 413–414, 200–204 (2005)CrossRefGoogle Scholar
  37. 37.
    X. Li, Y. Fautrelle, Z. Ren, Acta Mater. 55, 5333–5347 (2007)CrossRefGoogle Scholar
  38. 38.
    R. Tönhard, G. Amberg, J. Cryst. Growth 194, 406–425 (1998)CrossRefGoogle Scholar
  39. 39.
    M.C. Flemings, Solidification Processing, 1st edn. (McGraw-Hill, New York, 1974)Google Scholar
  40. 40.
    W. Kurz, D.J. Fisher, Fundamentals of Solidification, 3rd edn. (Trans Tech Publications Ltd., Aedermannsdorf, 1992)Google Scholar
  41. 41.
    C.J. Vreeman, F.P. Incropera, Int. J. Heat Mass Transf. 43, 687–704 (2000)CrossRefGoogle Scholar
  42. 42.
    W.D. Griffiths, D.G. McCartney, Mater. Sci. Eng. A 216, 47–60 (1996)CrossRefGoogle Scholar
  43. 43.
    W.D. Griffiths, D.G. McCartney, Mater. Sci. Eng. A 222, 140–148 (1997)CrossRefGoogle Scholar
  44. 44.
    S. Eckert, B. Willers, P.A. Nikrityuk, K. Eckert, U. Michel, G. Zouhar, Mater. Sci. Eng. A 413–414, 211–216 (2005)CrossRefGoogle Scholar
  45. 45.
    A.N. Turchin, M. Zuijderwijk, J. Pool, D.G. Eskin, L. Katgerman, Acta Mater. 55, 3795–3801 (2007)CrossRefGoogle Scholar
  46. 46.
    D. Ma, W.Q. Jie, Y. Li, S.C. Ng, Acta Mater. 46, 3203–3210 (1998)CrossRefGoogle Scholar
  47. 47.
    S.R. Coriell, G.B. McFadden, W.F. Mitchell, B.T. Murray, J.B. Andrews, Y. Arikawa, J. Cryst. Growth 224, 145–154 (2001)CrossRefGoogle Scholar
  48. 48.
    A. Das, S. Ji, Z. Fan, Acta Mater. 50, 4571–4585 (2002)CrossRefGoogle Scholar
  49. 49.
    P.A. Nikrityuk, K. Eckert, R. Grundmann, Int. J. Heat Mass Transf. 49, 150–1515 (2006)CrossRefGoogle Scholar
  50. 50.
    P.A. Nikrityuk, K. Eckert, B. Willers, S. Eckert, Modeling of Casting, Welding and Advanced Solidification Processes XI (The Minerals, Metals & Materials Society, Warrendale, 2006), pp. 333–340Google Scholar
  51. 51.
    A.N. Turchin, D.G. Eskin, L. Katgerman, Int. J. Cast Metals Res. 20, 312–318 (2007)Google Scholar
  52. 52.
    S. Henry, T. Minghetti, M. Rappaz, Acta Mater. 46, 6431–6443 (1998)CrossRefGoogle Scholar
  53. 53.
    A.N. Turchin, D.G. Eskin, L. Katgerman, Metall. Mater. Trans. A 38A, 1317–1329 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Brunel Centre for Advanced Solidification Technology, Brunel University LondonUxbridgeUK

Personalised recommendations