Arthur, J., The Endoscopic Classification of Representations: Orthogonal and Symplectic Groups, American Mathematical Society Colloquium Publications 61, American Mathematical Society, Providence, RI, 2013.
CrossRef
Google Scholar
Aubert, A. M., Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d’un groupe réductif
p-adique, Trans. Amer. Math. Soc. 347 (1995), 2179–2189; Erratum, Trans. Amer. Math. Soc 348 (1996), 4687–4690.
MathSciNet
CrossRef
Google Scholar
Badulescu, A. I., On p-adic Speh representations, Bull. Soc. Math. France 142 (2014), 255–267.
MathSciNet
CrossRef
Google Scholar
Badulescu, A. I.; Henniart, G.; Lemaire, B. and Sécherre, V., Sur le dual unitaire de
GL
r(D), Amer. J. Math. 132 (2010), no. 5, 1365–1396.
MathSciNet
CrossRef
Google Scholar
Badulescu, A. I. and Renard, D. A., Sur une conjecture de Tadić, Glasnik Mat. 39 no. 1 (2004), 49–54.
MathSciNet
CrossRef
Google Scholar
Badulescu, A. I. and Renard, D. A., Unitary dual of
GL
n
at archimedean places and global Jacquet-Langlands correspondence, Compositio Math. 146, vol. 5 (2010), 1115–1164.
Google Scholar
Baruch, D., A proof of Kirillov’s conjecture, Ann. of Math. (2) 158, no. 1 (2003), 207–252.
MathSciNet
CrossRef
Google Scholar
Bernstein, J., P-invariant distributions on
GL(N) and the classification of unitary representations of
GL(N) (non-archimedean case), Lie Group Representations II, Lecture Notes in Math. 1041, Springer-Verlag, Berlin, 1984, 50–102.
Google Scholar
Borel, A. and Wallach, N., Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Mathematics Studies, vol. 94, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980.
Google Scholar
Casselman, W., Introduction to the theory of admissible representations of
p-adic reductive groups, preprint (http://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf).
Casselman, W., A new nonunitarity argument for p-adic representations, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28, no. 3 (1981), 907–928 (1982).
Google Scholar
Gelfand, I. M. and Naimark, M. A., Unitary representations of semi simple Lie groups 1, Unitary representations of complex unimodular group, M. Sbornik 21 (1947), 405–434.
Google Scholar
Gelfand, I. M. and Naimark, M. A., Unitäre Darstellungen der Klassischen Gruppen (German translation of Russian publication from 1950), Akademie Verlag, Berlin, 1957.
Google Scholar
Hanzer, M., The unitarizability of the Aubert dual of the strongly positive discrete series, Israel J. Math. 169 (2009), no. 1, 251–294.
MathSciNet
CrossRef
Google Scholar
Hanzer, M. and Tadić, M., A method of proving non-unitarity of representations of p-adic groups I, Math. Z. 265 (2010), no. 4, 799–816.
MathSciNet
CrossRef
Google Scholar
Hanzer, M. and Jantzen, C., A method of proving non-unitarity of representations of p-adic groups, J. Lie Theory 22 (2012), no. 4, 1109–1124.
MathSciNet
MATH
Google Scholar
Harris, M. and Taylor, R., On the geometry and cohomology of some simple Shimura varieties, Princeton University Press, Annals of Math. Studies 151, 2001.
Google Scholar
Henniart, G., Une preuve simple des conjectures de Langlands pour GL(n) sur un corps
p-adique, Invent. Math. 139 (2000), 439–455.
MathSciNet
CrossRef
Google Scholar
Howe, R. and Moore, C., Asymptotic properties of unitary representations, J. Funct. Anal. 32 (1979), no. 1, 72–96.
MathSciNet
CrossRef
Google Scholar
Jacquet, H., On the residual spectrum of
GL(n), Lie Group Representations II, Lecture Notes in Math. 1041, Springer-Verlag, Berlin, 1984, 185–208.
Google Scholar
Jantzen, C., On supports of induced representations for symplectic and odd-orthogonal groups, Amer. J. Math. 119 (1997), 1213–1262.
MathSciNet
CrossRef
Google Scholar
Jantzen, C., Discrete series for
p-adic
SO(2n) and restrictions of representations of
O(2n), Canad. J. Math. 63, no. 2 (2011), 327–380.
MathSciNet
CrossRef
Google Scholar
Jantzen, C., Tempered representations for classical
p-adic groups, Manuscripta Math. 145 (2014), no. 3–4, 319–387.
MathSciNet
CrossRef
Google Scholar
Kazhdan, D., Connection of the dual space of a group with the structure of its closed subgroups, Functional Anal. Appl. 1 (1967), 63–65.
MATH
Google Scholar
Kirillov, A. A., Infinite dimensional representations of the general linear group, Dokl. Akad. Nauk SSSR 114 (1962), 37–39; Soviet Math. Dokl. 3 (1962), 652–655.
Google Scholar
Konno, T., A note on the Langlands classification and irreducibility of induced representations of
p-adic groups, Kyushu J. Math. 57 (2003), no. 2, 383–409.
MathSciNet
CrossRef
Google Scholar
Kudla, S. S., Notes on the local theta correspondence, lectures at the European School in Group Theory, 1996, preprint (http://www.math.toronto.edu/~skudla/castle.pdf).
Lapid, E. and Mínguez, A., On parabolic induction on inner forms of the general linear group over a non-archimedean local field, Selecta Math. (N.S.) to appear, arXiv:1411.6310.
Google Scholar
Lapid, E., Muić, G. and Tadić, M., On the generic unitary dual of quasisplit classical groups, Int. Math. Res. Not. no. 26 (2004), 1335–1354.
MathSciNet
CrossRef
Google Scholar
Laumon, G., Rapoport, M. and Stuhler, U., P-elliptic sheaves and the Langlands correspondence, Invent. Math. 113 (1993), 217–338.
MathSciNet
CrossRef
Google Scholar
Matić, I. and Tadić, M., On Jacquet modules of representations of segment type, Manuscripta Math. 147 (2015), no. 3–4, 437–476.
MathSciNet
CrossRef
Google Scholar
Mautner, F., Spherical functions over
p-adic fields
I, Amer. J. Math. 80 (1958). 441–457.
MathSciNet
CrossRef
Google Scholar
Mœglin, C., Sur certains paquets d’Arthur et involution d’Aubert-Schneider-Stuhler généralisée, Represent. Theory 10 (2006), 86–129.
MathSciNet
CrossRef
Google Scholar
Mœglin, C., Multiplicité 1 dans les paquets d’Arthur aux places p-adiques, in “On certain L-functions”, Clay Math. Proc. 13 (2011), 333–374.
MATH
Google Scholar
Mœglin, C., Paquets stables des séries discrètes accessibles par endoscopie tordue; leur paramètre de Langlands, Contemp. Math. 614 (2014), pp. 295–336.
CrossRef
Google Scholar
Mœglin, C. and Renard, D., Paquet d’Arthur des groupes classiques non quasi-déployś, preprint.
Google Scholar
Mœglin, C. and Tadić, M., Construction of discrete series for classical
p-adic groups, J. Amer. Math. Soc. 15 (2002), 715–786.
MathSciNet
CrossRef
Google Scholar
Mœglin, C. and Waldspurger, J.-L., Sur le transfert des traces tordues d’un group linéaire à un groupe classique p-adique, Selecta mathematica 12 (2006), pp. 433–516.
MathSciNet
CrossRef
Google Scholar
Muić, G. and Tadić, M., Unramified unitary duals for split classical
p–adic groups; the topology and isolated representations, in “On Certain L-functions”, Clay Math. Proc. vol. 13, 2011, 375–438.
MATH
Google Scholar
Renard, D., Représentations des groupes réductifs
p-adiques, Cours Spécialisés 17, Société Mathématique de France, Paris, 2010.
Google Scholar
Rodier, F., Whittaker models for admissible representations, Proc. Sympos. Pure Math. AMS 26 (1983), pp. 425–430.
CrossRef
Google Scholar
Schneider, P. and Stuhler, U., Representation theory and sheaves on the Bruhat-Tits building, Publ. Math. IHES 85 (1997), 97–191.
MathSciNet
CrossRef
Google Scholar
Sécherre, V., Proof of the Tadić conjecture (U0) on the unitary dual of GL
m(D), J. reine angew. Math. 626 (2009), 187–203.
MathSciNet
MATH
Google Scholar
Silberger, A., The Langlands quotient theorem for
p-adic groups, Math. Ann. 236 (1978), no. 2, 95–104.
MathSciNet
CrossRef
Google Scholar
Silberger, A., Special representations of reductive p-adic groups are not integrable, Ann. of Math. 111 (1980), 571–587.
MathSciNet
CrossRef
Google Scholar
Speh, B., Unitary representations of
\(GL(n, \mathbb R)\)
with non-trivial (g, K)- cohomology, Invent. Math. 71 (1983), 443–465.
Google Scholar
Tadić, M., Unitary representations of general linear group over real and complex field, preprint MPI/SFB 85–22 Bonn (1985), (http://www.mpim-bonn.mpg.de/preblob/5395).
Tadić M. Unitary dual of
p-adic
GL(n), Proof of Bernstein Conjectures, Bulletin Amer. Math. Soc. 13 (1985), 39–42.
MathSciNet
CrossRef
Google Scholar
Tadić, M., Classification of unitary representations in irreducible representations of general linear group (non-archimedean case), Ann. Sci. École Norm. Sup. 19 (1986), 335–382.
MathSciNet
CrossRef
Google Scholar
Tadić, M., Induced representations of
GL(n, A) for
p-adic division algebras
A, J. reine angew. Math. 405 (1990), 48–77.
MathSciNet
MATH
Google Scholar
Tadić, M., An external approach to unitary representations, Bull. Amer. Math. Soc. (N.S.) 28, no. 2 (1993), 215–252.
MathSciNet
CrossRef
Google Scholar
Tadić, M., Representations of
p-adic symplectic groups, Compositio Math. 90 (1994), 123–181.
MathSciNet
MATH
Google Scholar
Tadić, M., Structure arising from induction and Jacquet modules of representations of classical
p-adic groups, J. of Algebra 177 (1995), 1–33.
MathSciNet
CrossRef
Google Scholar
Tadić, M. On regular square integrable representations of p-adic groups, Amer. J. Math. 120, no. 1 (1998), 159–210.
MathSciNet
CrossRef
Google Scholar
Tadić, M., On reducibility of parabolic induction, Israel J. Math. 107 (1998), 29–91.
MathSciNet
MATH
Google Scholar
Tadić, M., Square integrable representations of classical
p-adic groups corresponding to segments, Represent. Theory 3 (1999), 58–89.
MathSciNet
CrossRef
Google Scholar
Tadić, M., On classification of some classes of irreducible representations of classical groups, in book Representations of real and p-adic groups, Singapore University Press and World Scientific, Singapore, 2004, 95–162.
MATH
Google Scholar
Tadić, M., \(GL(n,\mathbb C)\hat {\ }\)
and
\(G L(n,\mathbb R)\hat {\ }\), in “Automorphic Forms and L-functions II, Local Aspects”, Contemp. Math. 489 (2009), 285–313.
Google Scholar
Tadić, M., On reducibility and unitarizability for classical
p-adic groups, some general results, Canad. J. Math. 61 (2009), 427–450.
MathSciNet
CrossRef
Google Scholar
Tadić, M., On automorphic duals and isolated representations; new phenomena, J. Ramanujan Math. Soc. 25, no. 3 (2010), 295–328.
MathSciNet
MATH
Google Scholar
Tadić, M., On tempered and square integrable representations of classical p-adic groups, Sci. China Math., 56 (2013), 2273–2313.
MathSciNet
CrossRef
Google Scholar
Tadić, M., Remark on representation theory of general linear groups over a non-archimedean local division algebra, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 19(523) (2015), 27–53.
MathSciNet
MATH
Google Scholar
Vogan, D. A., The unitary dual of
GL(n) over an archimedean field, Invent. Math. 82 (1986), 449–505.
MathSciNet
CrossRef
Google Scholar
Zelevinsky, A. V., Induced representations of reductive p-adic groups II. On irreducible representations of GL(n), Ann. Sci. École Norm. Sup. 13 (1980), 165–210.
MathSciNet
CrossRef
Google Scholar