Skip to main content

On the Values for Factor Complexity

  • Conference paper
  • First Online:
Implementation and Application of Automata (CIAA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10977))

Included in the following conference series:

Abstract

In this paper, we consider factor complexity/topological entropy of infinite binary sequences. In particular, we show that for any real number \(\alpha \) with \(0 \leqslant \alpha \leqslant 1\), there is a subset of the Cantor space with Hausdorff dimension \(\alpha \), such that each one of its elements has factor complexity \(\alpha \). This result partially generalises to the multidimensional case where sequences are replaced by their d-dimensional analogs.

This work is partially supported by the Singapore Ministry of Education Academic Research Fund Tier 2 Grant MOE2016-T2-1-019/R146-000-234-112 (PI Frank Stephan).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calude, C.S.: Information and Randomness - An Algorithmic Perspective, 2nd (edn.). Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04978-5

  2. Cassaigne, J.: Special factors of sequences with linear subword complexity. In: Developments in Language Theory, DLT 1995, pp. 25–34. World Scientific Publishing, Singapore (1996)

    Google Scholar 

  3. Cassaigne, J., Frid, A.E., Puzynina, S., Zamboni, L.Q.: Subword complexity and decomposition of the set of factors. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634, pp. 147–158. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44522-8_13

    Chapter  MATH  Google Scholar 

  4. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. Springer, New York (2010). https://doi.org/10.1007/978-0-387-68441-3

    Book  MATH  Google Scholar 

  5. Ehrenfeucht, A., Lee, K.P., Rozenberg, G.: Subword complexities of various classes of deterministic developmental languages without interactions. Theor. Comput. Sci. 1, 59–75 (1975)

    Article  MathSciNet  Google Scholar 

  6. Ehrenfeucht, A., Rozenberg, G.: On the subword complexity of square-free D0L languages. Theor. Comput. Sci. 16, 25–32 (1981)

    Article  Google Scholar 

  7. Falconer, K.: Fractal Geometry - Mathematical Foundations and Applications, 2nd edn. Wiley, Hoboken (2003)

    Book  Google Scholar 

  8. Frisch, J., Tamuz, O.: Symbolic dynamics on amenable groups: the entropy of generic shifts. Ergodic Theory Dyn. Syst. 37(4), 1187–1210 (2017)

    Article  MathSciNet  Google Scholar 

  9. Furstenberg, H.: Intersections of cantor sets and transversality of semigroups. In: Problems in Analysis: a Symposium in Honor of Salomon Bochner, pp. 41–59 (1970)

    Google Scholar 

  10. Hausdorff, F.: Dimension und äußeres Maß (Dimension and outer measure). Mathematische Annalen 79(1–2), 157–179 (1919)

    Google Scholar 

  11. Hochman, M., Meyerovitch, T.: A characterization of the entropies of multidimensional shifts of finite type. Ann. Math. 171(3), 2011–2038 (2010)

    Article  MathSciNet  Google Scholar 

  12. Hoffmann, S., Schwarz, S., Staiger, L.: Shift-invariant topologies for the Cantor Space \(X^\omega \). Theor. Comput. Sci. 679, 145–161 (2017)

    Article  MathSciNet  Google Scholar 

  13. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 2nd edn. Addison-Wesley, Reading (2001)

    MATH  Google Scholar 

  14. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 3rd edn. Springer, Berlin (2008). https://doi.org/10.1007/978-0-387-49820-1

    Book  MATH  Google Scholar 

  15. Lutz, J.H.: The dimensions of individual strings and sequences. Inf. Comput. 187, 49–79 (2003)

    Article  MathSciNet  Google Scholar 

  16. Lyons, R., Peres, Y.: Probability on Trees and Networks. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  17. Mayordomo, E.: A Kolmogorov complexity characterization of constructive Hausdorff dimension. Inf. Process. Lett. 84(1), 1–3 (2002)

    Article  MathSciNet  Google Scholar 

  18. Morse, M., Hedlund, G.A.: Symbolic dynamics. Am. J. Math. 60(4), 815–866 (1938)

    Article  MathSciNet  Google Scholar 

  19. Nies, A.: Computability and Randomness. Oxford University Press, New York (2009)

    Book  Google Scholar 

  20. Ryabko, B.Ya.: Coding of combinatorial sources and Hausdorff dimension. Soviet Mathematics - Doklady 30(1), 219–222 (1984)

    Google Scholar 

  21. Ryabko, B.Ya.: Noiseless coding of combinatorial sources, Hausdorff dimension and Kolmogorov complexity. Problemy Peredachi Informatsii 22(3), 16–26 (1986)

    Google Scholar 

  22. Simpson, S.G.: Symbolic dynamics: Entropy = Dimension = Complexity. Theory Comput. Syst. 56(3), 527–543 (2015)

    Article  MathSciNet  Google Scholar 

  23. Sinai, Y.G.: On the notion of entropy of a dynamical system. Doklady Russ. Acad. Sci. 124, 768–771 (1959)

    MATH  Google Scholar 

  24. Staiger, L.: Kolmogorov complexity and Hausdorff dimension. Inf. Comput. 103(2), 159–194 (1993)

    Article  MathSciNet  Google Scholar 

  25. Staiger, L.: Constructive dimension equals Kolmogorov complexity. Inf. Process. Lett. 93(3), 149–153 (2005)

    Article  MathSciNet  Google Scholar 

  26. Staiger, L.: The Kolmogorov complexity of infinite words. Theor. Comput. Sci. 381(1–3), 187–199 (2007)

    Article  MathSciNet  Google Scholar 

  27. Staiger, L.: Finite automata and randomness. Invited Talk (without proceedings) at Jewels of Automata: from Mathematics to Applications, Leipzig, 6–9 May 2015. http://www.automatha.uni-leipzig.de/

  28. Staiger, L.: Exact constructive and computable dimensions. Theory Comput. Syst. 61(4), 1288–1314 (2017)

    Article  MathSciNet  Google Scholar 

  29. Zvonkin, A.K., Levin, L.A.: The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Russ. Math. Surv. 25, 83–124 (1970)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonyomous referees of CIAA 2018 and Hugh Anderson for very helpful comments on the mathematics and the English of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Stephan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moldagaliyev, B., Staiger, L., Stephan, F. (2018). On the Values for Factor Complexity. In: Câmpeanu, C. (eds) Implementation and Application of Automata. CIAA 2018. Lecture Notes in Computer Science(), vol 10977. Springer, Cham. https://doi.org/10.1007/978-3-319-94812-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94812-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94811-9

  • Online ISBN: 978-3-319-94812-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics