Skip to main content

Novel Pattern Recognition Method for Analysis the Radiation Exposure in Cancer Treatment

  • Conference paper
  • First Online:
  • 512 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 881))

Abstract

A novel pattern recognition technique has been deployed in the treatment of cancer tumours to provide improved targeting of ionising radiation and more accurate measurement of the radiation dose. The radiation beams enter the body from different directions to concentrate on the tumour. The centre of the tumour has to be precisely located relatively to patient’s skin surface, so the radiation does not affect healthy tissue and produces successful treatment. Existing methods of 3D dose measurement are highly labor-intensive and generally suffer from low accuracy. In this publication, we propose a new method of 3D measurement of the dose in real-time by using skin pattern recognition technology. The textural pattern of the patient’s skin is analysed from an image sensor in a specially designed camera using Fractal Geometry and Fuzzy logic. A specially designed net sensor is then placed over the area of skin exposed to the treatment in order to measure the radiation dose. The algorithms discussed below enable the precise focussing of the radiation. The novel object recognition technique provides a mathematical tool to build a volume model of the dose distribution inside the patient’s body. This paper provides an overview and specific information on the technology and necessary background for future industrial implementation into health care infrastructure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Soubra, M., Cygler, J., Mackay, G.F.: Evaluation of a dual metal oxide-silicon semiconductor field effect transistor detector as a radiation dosimeter. Med. Phys. 21(4), 567–572 (1984)

    Article  Google Scholar 

  2. Thomson I., Reece M.H.: Semiconductor MOSFET dosimetry. In: Proceedings of Health Physics Society Annual Meeting (1988)

    Google Scholar 

  3. De Deene, Y., Jirasek, A.: Uncertainty in 3D gel dosimetry. J. Phys. Conf. Series 573, 012008 (2015). 8th International Conference on 3D Radiation Dosimetry (IC3DDose)

    Article  Google Scholar 

  4. Nithiyanantham, K., Mani, G.K., Subramani, V., Mueller, L., Palaniappan, K.K., Kataria, T.: Analysis of direct clinical consequences of MLC positional errors in volumetric-modulated arc therapy using 3D dosimetry system. J. Appl. Clin. Med. Phys. 16(5), 296–305 (2015)

    Article  Google Scholar 

  5. Ma, T.P., Dressendorfer, P.V.: Ionizing Radiation Effects in MOS Devices and Circuits. Wiley Interscience, New York (1989)

    Google Scholar 

  6. Kohler, R.A., Kushner, R.A.: Total dose radiation hardness of MOS devices in hermetic ceramic packages. IEEE Trans. Nucl. Sci. 35(6), 1492–1496 (1988)

    Article  Google Scholar 

  7. Kaschieva, S.: Improving the radiation hardness of MOS structures. Int. J. Electron. 76(5), 883–886 (1994)

    Article  Google Scholar 

  8. Claeys, C.: Simoen, E: Radiation Effects in Advanced Semiconductor Materials and Devices. Springer Science and Business Media, Berlin (2002). https://doi.org/10.1007/978-3-662-04974-7

    Book  Google Scholar 

  9. Meurant, G.: New Insulators Devices and Radiation Effects, 1st edn. North Holland, New York (1999). Print book ISBN 9780444818010

    Google Scholar 

  10. Kumar, A.S., Sharma, S.D., Paul Ravindran, B.: Characteristics of mobile MOSFET dosimetry system for megavoltage photon beams. J. Med. Phys. 39(3), 142–149 (2014)

    Article  Google Scholar 

  11. Gopidaj, A., Billimagga, R.S., Ramasubramanian, V.: Performance characteristics and commissioning of MOSFET as an in-vivo dosimeter for high energy photon external beam radiation therapy. Rep. Pract. Oncol. Radiother. 13(3), 114–125 (2008)

    Article  Google Scholar 

  12. Choe, B.-Y.: Dosimetric characteristics of standard and micro MOSFET dosimeters as in-vivo dosimeter for clinical electron beam. J. Korean Phys. Soc. 55, 2566–2570 (2013)

    Google Scholar 

  13. Briere, T.M., et al.: In vivo dosimetry using disposable MOSFET dosimeters for total body irradiation. Med. Phys. 32, 1996 (2005)

    Article  Google Scholar 

  14. Scalchi, P., Francescon, P., Rajaguru, P.: Characterisation of a new MOSFET detector configuration for in vivo skin dosimetry. Med. Phys. 32(6), 1571–1578 (2005)

    Article  Google Scholar 

  15. Sze, S.M.: Physics of Semiconductor Devices, 2nd edn. Willey, New York (1981)

    Google Scholar 

  16. Nicollian, E.H., Brews, J.R.: MOS (Metal Oxide Semiconductor) Physics and Technology. Wiley, New York (1982)

    Google Scholar 

  17. Zemel, J.N.: Nondestructive Evaluation of Semiconductor Materials and Devices. Nato Science Series B. Springer US, New York (1979). ISSN 0258-1221

    Book  Google Scholar 

  18. Hughes, H.L., Benedetto, J.M.: Radiation effects and hardening of MOS technology devices and circuits. IEEE Trans. Nucl. Sci. 50, 500–521 (2003)

    Article  Google Scholar 

  19. Oldham, T.R., McLean, F.B.: Total ionizing dose effects in MOS oxides and devices. IEEE Trans. Nucl. Sci. 50, 483–499 (2003)

    Article  Google Scholar 

  20. Adams, J.R., Daves, W.R., Sanders, T.J.: A radiation hardened field oxide. IEEE Trans. Nucl. Sci. NS–24(6), 2099–2101 (1977)

    Article  Google Scholar 

  21. Davies, E.R.: Machine Vision: Theory, Algorithms, Practicalities. Academic press, London (1997)

    Google Scholar 

  22. Dubovitskiy, D.A., Blackledge, J.M.: Surface inspection using a computer vision system that includes fractal analysis. ISAST Trans. Electron. Signal Process. 2(3), 76–89 (2008)

    Google Scholar 

  23. Dubovitskiy, D.A., Blackledge, J.M.: Texture classification using fractal geometry for the diagnosis of skin cancers. In: EG UK Theory and Practice of Computer Graphics 2009, pp. 41–48 (2009)

    Google Scholar 

  24. Dubovitskiy, D., Devyatkov, V., Richer, G.: The application of mobile devices for the recognition of malignant melanoma. In: BIODEVICES 2014: Proceedings of the International Conference on Biomedical Electronics and Devices, Angers, France, p. 140, 03–06 March 2014. ISBN 978-989-758-013-0

    Google Scholar 

  25. Dubovitskiy, D.A., Blackledge, J.M.: Moletest: a web-based skin cancer screening system. In: The Third International Conference on Resource Intensive Applications and Services, Venice, Italy, vol. 978-1-61208-006-2, pp. 22–29, 22–27 May 2011

    Google Scholar 

  26. Dubovitskiy, D.A., Blackledge, J.M.: Object Detection and classification with applications to skin cancer screening. In: International Society for Advanced Science and Technology (ISAST) Intelligent Systems, vol. 1, no. 1, pp. 34–45 (2008). ISSN 1797–1802

    Google Scholar 

  27. Dubovitskiy, D.A., Blackledge, J.M.: Targeting cell nuclei for the automation of raman spectroscopy in cytology. In: Targeting Cell Nuclei for the Automation of Raman Spectroscopy in Cytology. British Patent No. GB1217633.5 (2012)

    Google Scholar 

  28. Dubovitskiy, D.A., McBride, J.: New ‘spider’ convex hull algorithm for an unknown polygon in object recognition. In: BIODEVICES 2013: Proceedings of the International Conference on Biomedical Electronics and Devices, p. 311 (2013)

    Google Scholar 

  29. Freeman, H.: Machine Vision: Algorithms, Architectures, and Systems. Academic press, London (1988)

    MATH  Google Scholar 

  30. Grimson, W.E.L.: Object Recognition by Computers: The Role of Geometric Constraints. MIT Press, Cambridge (1990)

    Google Scholar 

  31. Louis, J., Galbiati, J.: Machine Vision and Digital Image Processing Fundamentals. State University of New York, New-York (1990)

    Google Scholar 

  32. Nalwa, V.S., Binford, T.O.: On detecting edge. IEEE Trans. Pattern Anal. Mach. Intell. 1(PAMI–8), 699–714 (1986)

    Article  Google Scholar 

  33. Ripley, B.D.: Pattern Recognition and Neural Networks. Academic Press, Oxford (1996)

    Book  Google Scholar 

  34. Clarke, K., Schweizer, D.: Measuring the fractal dimension of natural surfaces using a robust fractal estimator. Cartograph. Geograph. Inf. Syst. 18, 27–47 (1991)

    Google Scholar 

  35. Falconer, K.: Fractal Geometry. Wiley, Hoboken (1990)

    MATH  Google Scholar 

  36. DeCola, L.: Fractal analysis of a classified landsat scene. Photogram. Eng. Remote Sens. 55(5), 601–610 (1989)

    Google Scholar 

  37. Snyder, W.E., Qi, H.: Machine Vision. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  38. Yagi, Y., Gilberson, J.R.: Digital imaging in pathology: the case for standardisation. J. Telemed. Telecare 11, 109–116 (2005)

    Article  Google Scholar 

  39. Zadeh, L.A.: Fuzzy Sets and Their Applications to Cognitive and Decision Processes. Academic Press, New York (1975)

    Google Scholar 

  40. Mamdani, E.H.: Advances in linguistic synthesis of fuzzy controllers. J. Man. Mach. 8, 669–678 (1976)

    Article  Google Scholar 

  41. Sanchez, E.: Resolution of composite fuzzy relation equations. Inf. Control 30, 38–48 (1976)

    Article  MathSciNet  Google Scholar 

  42. Vadiee, N.: Fuzzy Rule Based Expert System-I. Prentice Hall, Englewood (1993)

    Google Scholar 

Download references

Acknowledgement

The work reported in this paper is supported by the Oxford Recognition Ltd. The authors are grateful to Richard Spooner, Ann Wallace and Gladys O’Brien for help in the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitriy Dubovitskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dubovitskiy, D., Kouznetsov, V. (2018). Novel Pattern Recognition Method for Analysis the Radiation Exposure in Cancer Treatment. In: Peixoto, N., Silveira, M., Ali, H., Maciel, C., van den Broek, E. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2017. Communications in Computer and Information Science, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-319-94806-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94806-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94805-8

  • Online ISBN: 978-3-319-94806-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics