Advertisement

Microfluidic Devices Integrating Clinical Alternative Diagnostic Techniques Based on Cell Mechanical Properties

  • A. S. MoitaEmail author
  • D. Vieira
  • F. Mata
  • J. Pereira
  • A. L. N. Moreira
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 881)

Abstract

The present paper discusses the development of a microfluidic (lab-on-chip) device to study cells deformability aiming at developing a new diagnostic system for cancer detection. The chip uses electrowetting for droplet transport and cell deformability, on an open configuration. The chip configuration is analyzed towards various steps, from the selection of the materials, to the evaluation of the chip performance. Wetting properties of the selected materials are shown to play a major role. Furthermore, experimental tests confirm the relevance of selecting materials less prone to adsorb the biocomponents, as they tend to locally alter the surface wettability, promoting energy dissipation at the droplet contact line and affecting its manipulation. A rough analysis on droplet evaporation effects suggests that they are not negligible, even at optimum working conditions that minimize the evaporation by mass diffusion (low temperatures and high relative humidity). In this context, exploitation of droplet based microfluidic devices for point-of-care diagnostics in harsh environments should take mass diffusion effects into account.

Keywords

Microfluidic device Electrowetting Biofluid droplet dynamics Wettability Cancer diagnostics Cell mechanical properties 

Notes

Acknowledgements

The authors are grateful to Fundação para a Ciência e a Tecnologia (FCT) for partially financing this research through the project UID/EEA/50009/2013, and for supporting D. Vieira with a fellowship. The work was also partially financed by FCT through the project RECI/EMS-SIS/0147/2012, which also funded the fellowships of F. Mata and J. Pereira. A.S. Moita also acknowledges the contribution of FCT for financing her contract through the IF 2015 recruitment program.

Finally, the authors acknowledge the contribution of Prof. Susana Freitas and her team from INESC-MN for the microfabrication of the test chips.

References

  1. 1.
    Manz, A., Widmers, H.M., Graber, N.: Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sens. Actuators B Chem. 1(1–6), 244–248 (1990)CrossRefGoogle Scholar
  2. 2.
    Yager, P., Edwards, T., Fu, E., Helton, K., Nelson, K., Tam, M.R., Weigl, B.H.: Microfluidic diagnostic technologies for global public health. Nature 442(7101), 412–418 (2006)CrossRefGoogle Scholar
  3. 3.
    Dance, A.: The making of a medical microchip. Nature 545, 512–514 (2017)Google Scholar
  4. 4.
    Moita, A.S., Laurência, C., Ramos, J.A., Prazeres, D.M.F., Moreira, A.L.N.: Dynamics of droplets of biological fluids on smooth superhydrophobic surfaces under electrostatic actuation. J. Bionic Eng. 13, 220–234 (2016)CrossRefGoogle Scholar
  5. 5.
    Geng, H., Feng, J., Stabryl, L.M., Cho, S.K.: Dielectroetting manipulation for digital microfluidics: creating, transporting, splitting, and merging droplets. Lab Chip 17, 1060–1068 (2017)CrossRefGoogle Scholar
  6. 6.
    Berge, B.: Electrocapillarity and wetting of insulator films by water. Acad. Sci. Ser. II Mec. 317, 157–163 (1993)Google Scholar
  7. 7.
    Young, T.: An essay on the cohesion of fluids. Phil. Trans. R. Soc. Lond. 95, 65–87 (1805)CrossRefGoogle Scholar
  8. 8.
    Lippmann, G.: Relation entre les phénomènes électriques et capillaires. Ann. Chim. Phys. 5, 494–549 (1875). (in French)Google Scholar
  9. 9.
    Mugele, F., Baret, J.C.: Electrowetting: from basics to applications. J. Phys. Condens. Matter 17, R705–R774 (2005)CrossRefGoogle Scholar
  10. 10.
    Jones, T.B.: An electromechanical interpretation of electrowetting. J. Micromech. Microeng. 15, 1184–1187 (2005)CrossRefGoogle Scholar
  11. 11.
    Bahadur, V., Garimella, S.V.: An energy-based model for electrowetting-induced droplet actuation. J. Micromech. Microeng. 16, 1494–1503 (2006)CrossRefGoogle Scholar
  12. 12.
    Srinivasan, V., Pamula, V.K., Fair, R.B.: An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4, 310–315 (2004)CrossRefGoogle Scholar
  13. 13.
    Wheeler, A.R., Moon, H., Kim, C.J., Loo, J.A., Garrell, R.L.: Electrowetting-based microfluidics for analysis of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 76, 4833–4838 (2004)CrossRefGoogle Scholar
  14. 14.
    Rupp, F., Axmann, D., Ziegler, C., Geis-Gerstorfer, J.: Adsorption/desorption phenomena on pure and Teflon® AF-coated titania surfaces studied by dynamic contact angle analysis. J. Biomed. Mater. Res. 62, 567–578 (2002)CrossRefGoogle Scholar
  15. 15.
    Yon, J.Y., Garrell, R.L.: Preventing biomolecular adsorption in electrowetting-based biofluidic chips. Anal. Chem. 75, 5097–5102 (2003)CrossRefGoogle Scholar
  16. 16.
    Suresh, S., Spatz, J., Mills, J.P., Micoulet, A., Dao, M., Lim, C.T., Beil, M., Seufferlein, T.: Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 1, 15–30 (2005)CrossRefGoogle Scholar
  17. 17.
    Cross, S.E., Jin, Y.-S., Rao, J., Gimzewski, J.K.: Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. Lett. 2, 780–783 (2005)CrossRefGoogle Scholar
  18. 18.
    Gosset, G.R., Tse, H.T.K., Lee, S.A., Ying, Y., Lidgren, A.G., Yang, O.O., Rao, J., Clark, A.T., Di Carlo, D.: Hydrodynamic stretching of single cells for large population mechanical phenotyping. PNAS 109(20), 7630–7635 (2009)CrossRefGoogle Scholar
  19. 19.
    Remmerbach, T.W., Wottawah, F., Dietrich, J., Lincoln, B., Wittekind, C., Guck, J.: Oral cancer diagnosis by mechanical phenotyping. Cancer Res. 69(5), 1728–1732 (2009)CrossRefGoogle Scholar
  20. 20.
    Tse, H.T.K., Gosset, D.R., Moon, Y.S., Masaeli, M., Sohsman, M., Ying, Y., Mislick, K., Adams, R.P., Rao, J., Di Carlo, D.: Quantitative diagnosis of malignant pleural effusions by single-cell mechanophenotyping. Sci. Transl. Med. 5(212), 1–9 (2013)CrossRefGoogle Scholar
  21. 21.
    Chen, J.Z., Darhuber, A.A., Troian, S.M., Wagner, S.: Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation. Lab Chip 4(5), 473–480 (2004)CrossRefGoogle Scholar
  22. 22.
    Vieira, D., Mata, F., Moita, A.S., Moreira, A.L.N.: Microfluidic prototype of a lab-on-chip device for lung cancer diagnostics. In: Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, Porto, Portugal, 21–13 February 2017, pp. 63–68 (2017).  https://doi.org/10.5220/0006252700630068. ISBN: 978-989-758-216-5
  23. 23.
    Cheng, P., Li, D., Boruvka, L., Rotenberg, Y., Neumann, A.W.: Automation of axisymmetric drop shape analysis for measurements of interfacial tensions and contact angles. Colloids Surf. 43(2), 151–167 (1990)CrossRefGoogle Scholar
  24. 24.
    Kietzig, A.M.: Comments on “an essay on contact angle measurements” – an illustration of the respective influence of droplet deposition and measurement parameters. Plasma Proc. Polym. 8, 1003–1009 (2008)CrossRefGoogle Scholar
  25. 25.
    Vieira, D., Moita, A.S., Moreira, A.L.N.: Non-intrusive wettability characterization on complex surfaces using 3D laser scanning confocal fluorescence microscopy. In: 18th International Symposium on Applications of Laser and Imaging Techniques to Fluid Mechanics, Lisbon (2016)Google Scholar
  26. 26.
    Chen, L., Bonaccurso, E.: Electrowetting - from statics to dynamics. Adv. Colloid Interface Sci. 210, 2–12 (2014)CrossRefGoogle Scholar
  27. 27.
    Fan, S.-K., Yang, H., Wang, T.-T., Hsu, W.: Asymmetric electrowetting–moving droplets by a square wave. Lab Chip 7(10), 1330–1335 (2007)CrossRefGoogle Scholar
  28. 28.
    Mata, F., Moita, A.S., Kumar, R., Cardoso, S., Prazeres, D.M.F., Moreira, A.L.N.: Effect of surface wettability on the spreading and displacement of biofluid drops in electrowetting. In: Proceedings of ILASS – Europe 2016, 27th Annual Conference on Liquid Atomization and Spray Systems, September 2016, Brighton, UK, 4–7 September 2016 (2016). ISBN 978-1-910172-09-4Google Scholar
  29. 29.
    Adamo, A., Sharei, A., Adamo, L., Lee, B., Mao, S., Jensen, K.F.: Microfluidics-based assessment of cell deformability. Anal. Chem. 84, 6438–6443 (2012)CrossRefGoogle Scholar
  30. 30.
    Moita, A.S., Herrmann, D., Moreira, A.L.N.: Fluid dynamic and heat transfer processes between solid surfaces and non-Newtonian liquid droplets. Appl. Therm. Eng. 88, 33–46 (2015)CrossRefGoogle Scholar
  31. 31.
    Picknett, R., Bexon, R.: The evaporation of sessile or pendant drops in still air. J. Colloid Interface Sci. 61(2), 336–350 (1977)CrossRefGoogle Scholar
  32. 32.
    Sobac, B., Brutin, D.: Triple-line behavior and wettability controlled by nanocoated substrates: influence on sessile drop evaporation. Langmuir 27(24), 14999–15007 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • A. S. Moita
    • 1
    Email author
  • D. Vieira
    • 1
  • F. Mata
    • 1
  • J. Pereira
    • 1
  • A. L. N. Moreira
    • 1
  1. 1.IN+ - Center for Innovation, Technology and Policy Research, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal

Personalised recommendations