Skip to main content

A Portable Chemical Detection System with Anti-body Biosensor for Impedance Based Monitoring of T2-mycotoxin Bioterrorism Agents

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 881))

Abstract

The work describes the development of a portable and autonomous biosensing label free platform for detection of biotoxin substances. The biosensor is realized as an on-chip package-free micro electrochemical cell consisting of a counter electrode (CE), a reference electrode (RE) and a working electrode (WE) patterned on a single silicon chip. To improve sensor sensitivity, the WE was implemented as a microelectrode array of 40 micron diameter gold disks with 400 micron centre-to-centre distance, which underwent corresponding surface modification for antibody immobilisation. The interfacial biosensor changes produced by T2-mycotoxin antigen-antibody reaction were sensed by means of Electrochemical Impedance Spectroscopy in a frequency range from 10 Hz to 100 kHz. The signal processing algorithm for mycotoxin quantification was based on analysis of biosensor impedance spectra and its equivalent electrical circuit. It is implemented in corresponding software at microcontroller and single-board computer level in such a manner that the results can be produced at point-of-need or in the decision center without user intervention. The instrumentation represented a mix signal measurement system which consisted of analog and digital parts. The analog part constituted a low noise, highly-sensitive hardware which implemented impedance measurements on the basis of a quadrature signal processing of the biosensor in response to a harmonic stimulation signal. The key unit of the digital part of the device was an Atmel microcontroller with inbuilt 12-bit ADC and external 16-bit DAC, which are responsible for device configuration, stimulation signal generation, biosensor signal digitalization, its initial signal processing and communication with the single-board computer. A calibration of the platform in the range of 0–250 ppm of T2 toxin concentrations confirmed that the system can provide successful detection of the toxin at the levels above 25 ppm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shriver-Lake, L.C., Ligler, F.S.: The array biosensor for counterterrorism. IEEE Sens. J. 5(4), 751–756 (2005)

    Article  Google Scholar 

  2. Ahmad, A., Moore, E.J.: Comparison of cell-based biosensors with traditional analytical techniques for cytotoxicity monitoring and screening of polycyclic aromatic hydrocarbons in the environment. Anal. Lett. 42(1), 1–28 (2009)

    Article  Google Scholar 

  3. Brennan, D., Lambkin, P., Moore, E.J., Galvin, P.: An integrated optofluidic platform for DNA hybridization and detection. IEEE Sens. J. 8(5), 536–542 (2008)

    Article  Google Scholar 

  4. Bryan, T., Luo, X., Bueno, P.R., Davis, J.J.: An optimised electrochemical biosensor for the label-free detection of C-reactive protein in blood. Biosens. Bioelectron. 39(1), 94–98 (2013)

    Article  Google Scholar 

  5. Zhang, W., Du, Y., Wang, M.L.: Noninvasive glucose monitoring using saliva nano-biosensor. Sens. Bio-Sens. Res. 4, 23–29 (2015)

    Article  Google Scholar 

  6. Wang, X., Lu, X., Chen, J.: Development of biosensor technologies for analysis of environmental contaminants. Trends Environ. Anal. Chem. 2, 25–32 (2014)

    Article  Google Scholar 

  7. Yong, D., Liu, C., Zhu, C., Yu, D., Liu, L., Zhai, J., Dong, S.: Detecting total toxicity in water using a mediated biosensor system with flow injection. Chemosphere 139, 109–116 (2015)

    Article  Google Scholar 

  8. Herzog, G., Moujahid, W., Twomey, K., Lyons, C., Ogurtsov, V.I.: On-chip electrochemical microsystems for measurements of copper and conductivity in artificial seawater. Talanta 116, 26–32 (2013)

    Article  Google Scholar 

  9. Ogurtsov, V.I., Twomey, K., Herzog, G.: Development of an electrochemical sensing system for environmental monitoring of port water quality to integrate on-board an autonomous robotic fish. In: Hashmi, S. (ed.) Comprehensive Materials Processing. Sensor Materials, Technologies and Applications, vol. 13, pp. 317–351. Elsevier Science, Oxford (2014)

    Chapter  Google Scholar 

  10. Said, N.A.M., Twomey, K., Ogurtsov, V.I., Arrigan, D.W.M., Herzog, G.: Fabrication and electrochemical characterization of micro- and nanoelectrode arrays for sensor applications. J. Phys. Conf. Ser. 307, 012052 (2011)

    Article  Google Scholar 

  11. Thevenot, D.R., Toth, K., Durst, R.A., Wilson, G.S.: Electrochemical biosensors: recommended definitions and classification. Pure Appl. Chem. 71, 2333–2348 (1999)

    Article  Google Scholar 

  12. Scheller, F.W., Wollenbergera, U., Warsinkea, A., Lisdata, F.: Research and development in biosensors. Curr. Opin. Biotechnol. 12, 35–40 (2001)

    Article  Google Scholar 

  13. Vo-Dinh, T., Cullum, B.: Biosensors and biochips: advances in biological and medical diagnostics. Fresen. J. Anal. Chem. 366(6–7), 540–551 (2000)

    Article  Google Scholar 

  14. Hock, B., Seifert, M., Kramer, K.: Engineering receptors and antibodies for biosensors. Biosens. Bioelectron. 17(3), 239–249 (2002)

    Article  Google Scholar 

  15. Wollenberger, U.: Third generation biosensors - integrating recognition and transduction in electrochemical sensors. In: Gorton, L. (ed.) Biosensors and Modem Biospecific Analytical Techniques, pp. 65–130. Elsevier, Amsterdam (2005)

    Chapter  Google Scholar 

  16. Koyun, A., Ahlatcıoğlu, E., İpek, Y.K.: Biosensors and their principles. In: Kara, S. (ed.) A Roadmap of Biomedical Engineers and Milestones. INTECH, Rijeka (2012)

    Google Scholar 

  17. Sharma, S., Byrne, H., O’Kennedy, R.J.: Antibodies and antibody-derived analytical biosensors. Essays Biochem. 60(1), 9–18 (2016)

    Article  Google Scholar 

  18. Byrne, B., Stack, E., Gilmartin, N., O’Kennedy, R.: Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors 9(6), 4407–4445 (2009)

    Article  Google Scholar 

  19. Perumal, V., Hashim, U.: Advances in biosensors: principle, architecture and applications. J. Appl. Biomed. 12(1), 1–15 (2014)

    Article  Google Scholar 

  20. Dodeigne, C., Thunus, L., Lejeune, R.: Chemiluminescence as diagnostic tool. A review. Talanta 51, 415–439 (2000)

    Article  Google Scholar 

  21. Jiang, X., Li, D., Xu, X., Ying, Y., Li, Y., Ye, Z., et al.: Immunosensors for detection of pesticide residues. Biosens. Bioelectron. 23(11), 1577–1587 (2008)

    Article  Google Scholar 

  22. Yalow, R.S., Berson, S.A.: Assay of plasma insulin in human subjects by immunological methods. Nature 184, 1648–1649 (1959)

    Article  Google Scholar 

  23. Patel, Pd.: (Bio)sensors for measurement of analytes implicated in food safety. A review. Trends Anal. Chem. 21(2), 96–115 (2002)

    Article  MathSciNet  Google Scholar 

  24. Ogurtsov, V.I., Twomey, K., Pulka, J.: A portable sensing system for impedance based detection of biotoxin substances. In: 10th International Joint Conference on Biomedical Engineering Systems and Technologies Proceedings, BIODEVICES, (BIOSTEC 2017), Porto, Portugal, vol. 1, pp. 54–62 (2017)

    Google Scholar 

  25. Sadana, A.: Biosensors: Kinetics of Binding and Dissociation Using Fractals, 1st edn. Elsevier, Amsterdam (2003)

    Google Scholar 

  26. Zhang, S., Zhao, H., John, R.: Development of a generic microelectrode array biosensing system. Anal. Chimica Acta 421(2), 175–187 (2000)

    Article  Google Scholar 

  27. Willner, I., Katz, E., Willner, B.: Layered functionalized electrodes for electrochemical biosensor applications. In: Yang, V.C., Ngo, T.T. (eds.) Biosensors and Their Applications. Elsevier, Amsterdam (2000)

    Google Scholar 

  28. Arrigan, D.W.M.: Electrochemical Strategies in Detection Science. Royal Society of Chemistry, Cambridge (2016)

    Google Scholar 

  29. Twomey, K., O’Mara, P., Pulka, J., McGillycuddy, S., et al.: Fabrication and characterisation of a test platform integrating nanoporous structures with biochemical functionality. IEEE Sens. J. 15(8), 4329–4337 (2015)

    Article  Google Scholar 

  30. Kafi, A.K.M., Lee, D.-Y., Park, S.-H., Kwon, Y.-S.: Potential application of hemoglobin as an alternative to peroxidase in a phenol biosensor. Thin Solid Films 516(9), 2816–2821 (2008)

    Article  Google Scholar 

  31. Zhou, Y., Tang, L., Zeng, G., Zhang, C., Xie, X., Liu, Y., Wang, J., Tang, J., Zhang, Y., Deng, Y.: Label free detection of lead using impedimetric sensor based on ordered mesoporous carbon–gold nanoparticles and DNAzyme catalytic beacons. Talanta 146, 641–647 (2016)

    Article  Google Scholar 

  32. Rushworth, J.V., Ahmed, A., Griffiths, H.H., Pollock, N.M., Hooper, N.M., Millner, P.A.: A label-free electrical impedimetric biosensor for the specific detection of Alzheimer’s amyloid-beta oligomers. Biosens. Bioelectron. 56, 83–90 (2014)

    Article  Google Scholar 

  33. Arrigan, D.W.M.: Nanoelectrodes, nanoelectrode arrays and their applications. Analyst 129(12), 1157–1165 (2004)

    Article  Google Scholar 

  34. Bennett, J.W., Klich, M.: Mycotoxins. Clin. Microbiol. Rev. 16(3), 497–516 (2003)

    Article  Google Scholar 

  35. Gupta, R.C. (ed.): Handbook of Toxicology of Chemical Warfare Agents, 1st edn. Elsevier, Amsterdam (2009)

    Google Scholar 

  36. Ler, S.G., Lee, F.K., Gopalakrishnakone, P.: Trends in detection of warfare agents detection methods for ricin, staphylococcal enterotoxin B and T-2 toxin. J. Chromatogr. A 1133, 1–12 (2006)

    Article  Google Scholar 

  37. Zheng, M.Z., Richard, J.L., Binder, J.: A review of rapid methods for the analysis of mycotoxins. Mycopathologia 161, 261–273 (2006)

    Article  Google Scholar 

  38. Pittet, A.: Keeping the mycotoxins out: experience gathered by an international food company. Nat. Toxins 3(4), 281–287 (1995)

    Article  MathSciNet  Google Scholar 

  39. De Saeger, S., Van Peteghem, C.: Dipstick enzyme immunoassay to detect Fusarium T-2 toxin in wheat. Appl. Environ. Microbiol. 62(6), 1880–1884 (1996)

    Google Scholar 

  40. Said, M., Azura, N.: Electrochemical biosensor based on microfabricated electrode arrays for life sciences applications. Ph.D. thesis, University College Cork (2014)

    Google Scholar 

  41. http://www.handhold.eu/

  42. Britz, D., Strutwolf, J.: Digital Simulation in Electrochemistry, 4th edn. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30292-8

    Book  MATH  Google Scholar 

  43. Hermes, M., Scholz, F.: Solid-state electrochemical reactions of electroactive microparticles and nanoparticles in a liquid electrolyte environment. In: Kharton, V.V. (ed.) Solid State Electrochemistry I: Fundamentals, Materials and Their Applications. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2009)

    Google Scholar 

  44. Guo, J., Lindner, E.: Cyclic voltammograms at coplanar and shallow recessed microdisc electrode arrays: guidelines for design and experiment. Anal. Chem. 81(1), 130–138 (2009)

    Article  Google Scholar 

  45. Said, N.A.M., Twomey, K., Herzog, G., Ogurtsov V.I.: Fabrication and characterization of microfabricated on-chip microelectrochemical cell for biosensing applications. In: Zaaba, S.K., Zakaria, S.M.M.S., Kamarudin, K., et al. (eds.) Asian Conference on Chemical Sensors 2015, ACCS 2015, vol. 1808, pp. 020032-1–020032-13. AIP, Melville (2017)

    Google Scholar 

  46. Masson, J.-F., Battaglia, T.M., Davidson, M.J., Kim, Y.-C., Prakash, A.M.C., Beaudoin, S., Booksh, K.S.: Biocompatible polymers for antibody support on gold surfaces. Talanta 67(5), 918–925 (2005)

    Article  Google Scholar 

  47. Haddada, M.B., Huebner, M., Casale, S., Knopp, D., Niessner, R., Salmain, M., Boujday, S.: Gold nanoparticles assembly on silicon and gold surfaces: mechanism, stability, and efficiency in diclofenac biosensing. J. Phys. Chem. C 120(51), 29302–29311 (2016)

    Article  Google Scholar 

  48. Vashist, S.K., Dixit, C.K., MacCraith, B.D., O’Kennedy, R.: Effect of antibody immobilization strategies on the analytical performance of a surface plasmon resonance-based immunoassay. Analyst 136(21), 4431–4436 (2011)

    Article  Google Scholar 

  49. Raj, J., Herzog, G., Manning, M., Volcke, C., Maccraith, B., Ballantyne, S., Thompson, M., Arrigan, D.: Surface immobilisation of antibody on cyclic olefin copolymer for sandwich immunoassay. Biosens. Bioelectron. 24, 2654–2658 (2009)

    Article  Google Scholar 

  50. Barsoukov, E., Macdonald, J.R. (eds.): Impedance Spectroscopy Theory, Experiment, and Applications, 2nd edn. Wiley, Hoboken (2005)

    Google Scholar 

  51. Lasia, A.: Electrochemical impedance spectroscopy and its applications. In: Conway, B.E., Bockris, J., White, R.E. (eds.) Modern Aspects of Electrochemistry, vol. 32, pp. 143–248. Kluwer Academic/Plenum Publishers, New York (1999)

    Chapter  Google Scholar 

  52. Suni, I.I.: Impedance methods for electrochemical sensors using nanomaterials. Trends Anal. Chem. 27(7), 604–610 (2008)

    Article  Google Scholar 

  53. Jacobsen, T., West, K.: Diffusion impedance in planar, cylindrical and spherical symmetry. Elecrochimika Acta 40(2), 255–262 (1995)

    Article  Google Scholar 

  54. Hu, S.Q., Wu, Z.Y., Zhou, Y.M., Cao, Z.X., Shen, G.L., Yu, R.Q.: Capacitive immunosensor for transferrin based on an o-aminobenzenthiol oligomer layer. Anal. Chim. Acta 458, 297–304 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support of this work by European Commission projects FP7-SEC-2011.3.4-2 “HANDHOLD: HANDHeld OLfactory Detector” and H2020-NMP-29-2015 “HISENTS: High level Integrated SEnsor for NanoToxicity Screening” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Ogurtsov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ogurtsov, V.I., Twomey, K. (2018). A Portable Chemical Detection System with Anti-body Biosensor for Impedance Based Monitoring of T2-mycotoxin Bioterrorism Agents. In: Peixoto, N., Silveira, M., Ali, H., Maciel, C., van den Broek, E. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2017. Communications in Computer and Information Science, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-319-94806-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94806-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94805-8

  • Online ISBN: 978-3-319-94806-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics