Advertisement

Evaluating Runs of Homozygosity in Exome Sequencing Data - Utility in Disease Inheritance Model Selection and Variant Filtering

  • Jorge OliveiraEmail author
  • Rute Pereira
  • Rosário Santos
  • Mário Sousa
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 881)

Abstract

Runs of homozygosity (ROH) are regions consistently homozygous for genetic markers, which can occur throughout the human genome. Their size is dependent on the degree of shared parental ancestry, being longer in individuals descending from consanguineous marriages, or from inbred/isolated populations. Based on ROH existence, homozygosity mapping (HM) was developed as powerful tool for gene-discovery in human genetics. HM is based on the assumption that, through identity-by-descent, individuals affected by an autosomal recessive (AR) condition, are more likely to have homozygous markers surrounding the disease locus.

In this work, we reviewed some of the algorithms and bioinformatics tools available for HM and ROH detection, with special emphasis on those than can be applied to data from whole-exome sequencing (WES) data. Preliminary data is also shown demonstrating the relevance of performing ROH analysis, especially in sporadic cases. In this study, ROH from WES data of twelve unrelated patients was analyzed. Patients with AR diseases (n = 6) were subdivided into two groups: homozygous and compound heterozygous. ROH analysis was performed using the HomozygosityMapper software, varying the block length and collecting several parameters. Statistically significant differences between the two groups were identified for ROH total size and homozygosity score. The k-means clustering algorithm was then applied, where two clusters were identified, with statistically significant differences, corresponding to each predefined test group. Our results suggest that, in some cases, it may be possible to infer the most likely disease inheritance model from WES data alone, constituting a useful starting point for the subsequent variant filtering strategies.

Keywords

Whole-exome sequencing Homozygosity mapping Next-generation sequencing Clinical genetics 

Notes

Acknowledgements

The authors acknowledge support from: (i) Fundação para a Ciência e Tecnologia (FCT) [Grant ref.: PD/BD/105767/2014] (R.P.); (ii) Research grant attributed by “Fundo para a Investigação e Desenvolvimento do Centro Hospitalar do Porto” [Grant ref.: 336-13(196-DEFI/285-CES)] (J.O.). The work was also supported by the Institutions of the authors and in part by UMIB, which is funded by through FCT under the Pest-OE/SAU/UI0215/2014. The authors would like to thank the clinicians for patient referral.

References

  1. 1.
    Miko, I.: Gregor mendel and the principles of inheritance. Nat. Educ. 1(1), 134 (2008)MathSciNetGoogle Scholar
  2. 2.
    Christianson, A., Howson, C.P., Modell, B.: Global report on birth defects: the hidden toll of dying and disabled children, New York (2006)Google Scholar
  3. 3.
    Lobo, I., Shaw, K.: Discovery and types of genetic linkage. Nat. Educ. 1(1), 139 (2008)Google Scholar
  4. 4.
    Slatkin, M.: Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet. 9(6), 477–485 (2008)CrossRefGoogle Scholar
  5. 5.
    Sanger, F., Nicklen, S., Coulson, A.R.: DNA sequencing with chain-terminating inhibitors. PNAS 74(12), 5463–5467 (1977)CrossRefGoogle Scholar
  6. 6.
    Boycott, K.M., et al.: Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat. Rev. Genet. 14(10), 681–691 (2013)CrossRefGoogle Scholar
  7. 7.
    Xia, J., et al.: NGS catalog: a database of next generation sequencing studies in humans. Hum. Mutat. 33(6), E2341–E2355 (2012)CrossRefGoogle Scholar
  8. 8.
    Koboldt, D.C., et al.: The next-generation sequencing revolution and its impact on genomics. Cell 155(1), 27–38 (2013)CrossRefGoogle Scholar
  9. 9.
    Bittles, A.H.: Consanguinity and its relevance to clinical genetics. Clin. Genet. 60(2), 89–98 (2001)CrossRefGoogle Scholar
  10. 10.
    Instituto Nacional de Estatística: Marriages (Between persons of the opposite sex - No.) by Place of registration (NUTS - 2002), Sex, Relationship or affinity between the spouses and Spouse previous marital status; AnnualGoogle Scholar
  11. 11.
    McQuillan, R., et al.: Runs of homozygosity in European populations. Am. J. Hum. Genet. 83(3), 359–372 (2008)CrossRefGoogle Scholar
  12. 12.
    Lander, E.S., Botstein, D.: Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 236(4808), 1568–1570 (1987)CrossRefGoogle Scholar
  13. 13.
    Alkuraya, F.S.: Autozygome decoded. Genet. Med. 12(12), 765–771 (2010)CrossRefGoogle Scholar
  14. 14.
    Goodship, J., et al.: Report autozygosity mapping of a Seckel syndrome locus to chromosome 3q22.1-q24. Am. J. Hum. Genet. 67, 498–503 (2000)CrossRefGoogle Scholar
  15. 15.
    Alkuraya, F.S.: Homozygosity mapping: one more tool in the clinical geneticist’s toolbox. Genet. Med. 12(4), 236–239 (2010)CrossRefGoogle Scholar
  16. 16.
    Syvänen, A.-C.: Toward genome-wide SNP genotyping. Nat. Genet. 37(6s), S5 (2005)CrossRefGoogle Scholar
  17. 17.
    Gibbs, J.R., Singleton, A.: Application of genome-wide single nucleotide polymorphism typing: simple association and beyond. PLoS Genet. 2(10), e150 (2006)CrossRefGoogle Scholar
  18. 18.
    Evans, D.M., Cardon, L.R.: Guidelines for genotyping in genomewide linkage studies: single-nucleotide–polymorphism maps versus microsatellite maps. Am. J. Hum. Genet. 75(4), 687–692 (2004)CrossRefGoogle Scholar
  19. 19.
    Wang, Z., Gerstein, M., Snyder, M.: RNA-seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10(1), 57–63 (2009)CrossRefGoogle Scholar
  20. 20.
    Park, P.J.: ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. 10(10), 669–680 (2009)CrossRefGoogle Scholar
  21. 21.
    Li, Y., Tollefsbol, T.O.: DNA methylation detection: bisulfite genomic sequencing analysis. In: Tollefsbol, T. (ed.) Methods in Molecular Biology, vol. 791, pp. 11–21. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-1-61779-316-5_2CrossRefGoogle Scholar
  22. 22.
    Mardis, E.R.: The impact of next-generation sequencing technology on genetics. Trends Genet. 24(3), 133–141 (2008)CrossRefGoogle Scholar
  23. 23.
    Ng, S.B., et al.: Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet. 42(1), 30–35 (2010)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Oliveira, J., et al.: New splicing mutation in the choline kinase beta (CHKB) gene causing a muscular dystrophy detected by whole-exome sequencing. J. Hum. Genet. 60(6), 305 (2015)CrossRefGoogle Scholar
  25. 25.
    Pereira, R., et al.: Mutation analysis in patients with total sperm immotility. J. Assist. Reprod. Genet. 32(6), 893–902 (2015)CrossRefGoogle Scholar
  26. 26.
    Antonarakis, S.E., Krawczak, M., Cooper, D.N.: Disease-causing mutations in the human genome. Eur. J. Pediatr. 159(Suppl), S173–S178 (2000)CrossRefGoogle Scholar
  27. 27.
    Gripp, K.W., et al.: Truncating mutations in the last exon of NOTCH3 cause lateral meningocele syndrome. Am. J. Med. Genet. Part A 167(2), 271–281 (2015)CrossRefGoogle Scholar
  28. 28.
    Norton, N., et al.: Genome-wide studies of copy number variation and exome sequencing identify rare variants in BAG3 as a cause of dilated cardiomyopathy. Am. J. Hum. Genet. 88(3), 273–282 (2011)CrossRefGoogle Scholar
  29. 29.
    Sirmaci, A., et al.: Challenges in whole exome sequencing: an example from hereditary deafness. PLoS ONE 7(2), e32000 (2012)CrossRefGoogle Scholar
  30. 30.
    Sauna, Z.E., Kimchi-Sarfaty, C.: Understanding the contribution of synonymous mutations to human disease. Nat. Rev. Genet. 12(10), 683–691 (2011)CrossRefGoogle Scholar
  31. 31.
    Meienberg, J., et al.: Clinical sequencing: is WGS the better WES? Hum. Genet. 135(3), 359–362 (2016)CrossRefGoogle Scholar
  32. 32.
    Belkadi, A., et al.: Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Hum. Genet. 135, 359–362 (2016)CrossRefGoogle Scholar
  33. 33.
    Xu, W., et al.: Model-free linkage analysis of a binary trait. Stat. Hum. Genet.: Methods Protoc. 850, 317–345 (2012)CrossRefGoogle Scholar
  34. 34.
    Bailey-Wilson, J.E.: Parametric and nonparametric linkage analysis. In: Encyclopedia of Life Sciences. Wiley, Chichester (2006)Google Scholar
  35. 35.
    Pulst, S.M., et al.: Genetic linkage analysis. Arch. Neurol. 56(6), 667 (1999)CrossRefGoogle Scholar
  36. 36.
    Ott, J.: Estimation of the recombination fraction in human pedigrees: efficient computation of the likelihood for human linkage studies. Am. J. Hum. Genet. 26(5), 588 (1974)Google Scholar
  37. 37.
    Elston, R.C., Stewart, J.: A general model for the genetic analysis of pedigree data. Hum. Hereditary 21, 523–542 (1971)CrossRefGoogle Scholar
  38. 38.
    Kruglyak, L., et al.: Parametric and nonparametric linkage analysis: a unified multipoint approach. Am. J. Hum. Genet. 58, 1347–1363 (1996)Google Scholar
  39. 39.
    Ghahramani, Z.: An introduction to hidden Markov models and Bayesian networks. Int. J. Pattern Recogn. Artif. Intell. 15(1), 9–42 (2001)CrossRefGoogle Scholar
  40. 40.
    Goedken, R., et al.: Drawbacks of GENEHUNTER for larger pedigrees: application to panic disorder. Am. J. Med. Genet. 96(6), 781–783 (2000)CrossRefGoogle Scholar
  41. 41.
    Sobel, E., Lange, K.: Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. Am. J. Hum. Genet. 58(6), 1323–1337 (1996)Google Scholar
  42. 42.
    Geyer, C.: Introduction to Markov chain Monte Carlo. In: Brooks, S., et al. (eds.) Handbook of Markov Chain Monte Carlo, pp. 3–48. CRC Press, Boca Raton (2011)zbMATHGoogle Scholar
  43. 43.
    Romero-Hidalgo, S., et al.: GENEHUNTER versus SimWalk2 in the context of an extended kindred and a qualitative trait locus. Genetica 123(3), 235–244 (2005)CrossRefGoogle Scholar
  44. 44.
    Abecasis, G.R., et al.: Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30(1), 97–101 (2002)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Dudbridge, F.: A survey of current software for linkage analysis. Hum. Genomics 1(1), 63 (2003)CrossRefGoogle Scholar
  46. 46.
    MacCluer, J.W., et al.: Pedigree analysis by computer simulation. Zoo Biol. 5(2), 147–160 (1986)CrossRefGoogle Scholar
  47. 47.
    Gudbjartsson, D.F., et al.: Allegro, a new computer program for multipoint linkage analysis. Nat. Genet. 25(1), 12–13 (2000)CrossRefGoogle Scholar
  48. 48.
    Alkuraya, F.S.: The application of next-generation sequencing in the autozygosity mapping of human recessive diseases. Hum. Genet. 132(11), 1197–1211 (2013)CrossRefGoogle Scholar
  49. 49.
    Krawitz, P.M., et al.: Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat. Genet. 42(10), 827–829 (2010)CrossRefGoogle Scholar
  50. 50.
    Becker, J., et al.: Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am. J. Hum. Genet. 88(3), 362–371 (2011)CrossRefGoogle Scholar
  51. 51.
    Seelow, D., Schuelke, M.: HomozygosityMapper2012—bridging the gap between homozygosity mapping and deep sequencing. Nucleic Acids Res. 40(W1), W516–W520 (2012)CrossRefGoogle Scholar
  52. 52.
    Seelow, D., et al.: HomozygosityMapper—an interactive approach to homozygosity mapping. Nucleic Acids Res. 37(Web Server issue), W593–W599 (2009)CrossRefGoogle Scholar
  53. 53.
    Purcell, S., et al.: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81(3), 559–575 (2007)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Gusev, A., et al.: Whole population, genome-wide mapping of hidden relatedness. Genome Res. 19(2), 318–326 (2009)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Görmez, Z., et al.: HomSI: a homozygous stretch identifier from next-generation sequencing data. Bioinformatics 30(3), 445–447 (2013)CrossRefGoogle Scholar
  56. 56.
    Magi, A., et al.: H3M2: detection of runs of homozygosity from whole-exome sequencing data. Bioinformatics 30(20), 2852–2859 (2014)CrossRefGoogle Scholar
  57. 57.
    Carr, I.M., et al.: Autozygosity mapping with exome sequence data. Hum. Mutat. 34(1), 50–56 (2013)CrossRefGoogle Scholar
  58. 58.
    Seelow, D., et al.: GeneDistiller—distilling candidate genes from linkage intervals. PLoS ONE 3(12), e3874 (2008)CrossRefGoogle Scholar
  59. 59.
    Pippucci, T., et al.: EX-HOM (EXome HOMozygosity): a proof of principle. Hum. Hered. 72(1), 45–53 (2011)CrossRefGoogle Scholar
  60. 60.
    Tang, R., et al.: A variable-sized sliding-window approach for genetic association studies via principal component analysis. Ann. Hum. Genet. 73(Pt 6), 631–637 (2009)CrossRefGoogle Scholar
  61. 61.
    Barrett, J.C., et al.: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2), 263–265 (2004)CrossRefGoogle Scholar
  62. 62.
    Chang, C.: PLINK: whole genome data analysis toolset-identity by descent. https://www.cog-genomics.org/plink/1.9/ibd#homozyg
  63. 63.
    Pippucci, T., et al.: Detection of runs of homozygosity from whole exome sequencing data: state of the art and perspectives for clinical, population and epidemiological studies. Hum. Hered. 77(1–4), 63–72 (2014)CrossRefGoogle Scholar
  64. 64.
    Oliveira, J., et al.: Homozygosity mapping using whole-exome sequencing: a valuable approach for pathogenic variant identification in genetic diseases. In: Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOINFORMATICS, (BIOSTEC 2017), vol. 3, pp. 210–216 (2017)Google Scholar
  65. 65.
    Leigh, M.W., et al.: Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Genet. Med.: Off. J. Am. Coll. Med. Genet. 11(7), 473–487 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jorge Oliveira
    • 1
    • 2
    Email author
  • Rute Pereira
    • 1
  • Rosário Santos
    • 2
  • Mário Sousa
    • 1
  1. 1.Instituto de Ciências Biomédicas Abel Salazar (ICBAS)Universidade do PortoPortoPortugal
  2. 2.Centro de Genética Médica Dr. Jacinto Magalhães, Centro Hospitalar do PortoPortoPortugal

Personalised recommendations