Skip to main content

Bioethanol Production Using Saccharomyces cerevisiae Immobilized in Calcium Alginate–Magnetite Beads and Application of Response Surface Methodology to Optimize Bioethanol Yield

  • Chapter
  • First Online:
Sustainable Approaches for Biofuels Production Technologies

Part of the book series: Biofuel and Biorefinery Technologies ((BBT,volume 7))

Abstract

We studied the bioethanol production in molasses-based medium by yeast Saccharomyces cerevisiae immobilized in calcium alginate magnetite beads (CAMB). The yeast was isolated from soil samples collected near a local sugar mill, and identified as S. cerevisiae. We synthesized magnetite nanoparticles and immobilized yeast in CAMB. The media components and environmental parameters were statistically screened and optimized for better ethanol production, using statistical design methodologies—factorial designs and response surface methodology. The factors of molasses concentration, temperature and incubation time were found to have significant effect on ethanol production. The immobilized cells could be reused for more than 120 days, retaining its original activity. The CAMBs with immobilized yeast cells were analysed by ESEM with EDAX, after 96 h of fermentation to observe the surface structure of the beads. It can be observed that yeast was immobilized in the beads and actively growing. Further ethanol production was carried out in packed-bed column reactor using yeast immobilized in CAMB, under fed-batch mode. The average ethanol produced by fed-batch fermentation was 1.832 g% ± 0.103, and the average ethanol yield was 81.420% ± 4.6. Further studies using yeast immobilized in CAMB are recommended to carry out continuous fermentation, and further scale up bioethanol production in a magnetically stabilized fluidized bed reactor (MSFBR), where the position of the beads in the system can be controlled and maintained by the application of oscillating electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Rahman I, Ayob MTM, Radiman S (2014) Enhanced photocatalytic performance of NiO-decorated ZnO nanowhiskers for methylene blue degradation. J Nanotechnol 212694:8. https://doi.org/10.1155/2014/212694

  • Al-Bahry SN, Al-Wahaibi YM, Elshafie AE, Al-Bemani AS, Joshi SJ, Al-Makhmari HS, Al-Sulaimani HS (2013) Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. Int Biodeterior Biodegradation 81:141–146

    Article  Google Scholar 

  • Alexandre H, Rousseaux I, Charpentier C (1994) Ethanol adaptation mechanisms in Saccharomyces cerevisiae. Biotechnol Appl Biochem 20(2):173–183

    Google Scholar 

  • Amin G, De Mot R, Van Dijck K, Verachtert H (1985) Direct alcoholic fermentation of starchy biomass using amylolytic yeast strains in batch and immobilized cell systems. Appl Microbiol Biotechnol 22(4):237–245

    Article  Google Scholar 

  • Bajaj BK, Taank V, Thakur RL (2003) Characterization of yeasts for ethanolic fermentation of molasses with high sugar concentrations. J Sci Ind Res 62(11):1079–1085

    Google Scholar 

  • Bajaj BK, Yousuf S, Thakur RL (2001) Selection and characterization of yeasts for desirable fermentation characteristics. Indian J Microbiol 41(2):107–110

    Google Scholar 

  • Bajpai PK, Margaritis A (1985) Kinetics of ethanol production by immobilized cells of Zymomonas mobilis at varying D-glucose concentrations. Enzyme Microb Technol 7(9):462–464

    Article  Google Scholar 

  • Baptista CMSG, Cóias JMA, Oliveira ACM, Oliveira NMC, Rocha JMS, Dempsey MJ, Benson PS (2006) Natural immobilisation of microorganisms for continuous ethanol production. Enzyme Microb Technol 40(1):127–131

    Article  Google Scholar 

  • Beaven MJ, Charpentier C, Rose AH (1982) Production and tolerance of ethanol in relation to phospholipid fatty-acyl composition in Saccharomyces cerevisiae NCYC 431. J Gen Microbiol 128(7):1447–1455

    Google Scholar 

  • Bekers M, Ventina E, Karsakevich A, Vina I, Rapoport A, Upite D, Linde R (1999) Attachment of yeast to modified stainless steel wire spheres, growth of cells and ethanol production. Process Biochem 35(5):523–530

    Article  Google Scholar 

  • Berry CC, Curtis AS (2003) Functionalization of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R198

    Article  Google Scholar 

  • Bisson LF (1999) Stuck and sluggish fermentations. Am J Enol Vitic 50(1):107–119

    Google Scholar 

  • Black GM, Webb C, Matthews TM, Atkinson B (1984) Practical reactor systems for yeast cell immobilization using biomass support particles. Biotechnol Bioeng 26(2):134–141

    Article  Google Scholar 

  • Borzani W (2001) Variation of the ethanol yield during oscillatory concentrations changes in undisturbed continuous ethanol fermentation of sugar-cane blackstrap molasses. World J Microbiol Biotechnol 17(3):253–258

    Article  Google Scholar 

  • Borzani W, Gerab A, De La Higuera GA, Pires MH, Piplovic R (1993) Batch ethanol fermentation of molasses: a correlation between the time necessary to complete the fermentation and the initial concentrations of sugar and yeast cells. World J Microbiol Biotechnol 9(2):265–268

    Article  Google Scholar 

  • Cassidy MB, Lee H, Trevors JT (1996) Environmental applications of immobilized microbial cells: a review. J Ind Microbiol 16(2):79–101

    Article  Google Scholar 

  • Chen JC, Chou CC (1993) Cane sugar handbook: a manual for cane sugar manufacturers and their Chemists. Wiley, New York

    Google Scholar 

  • Cohen Y (2001) Biofiltration–the treatment of fluids by microorganisms immobilized into the filter bedding material: a review. Biores Technol 77(3):257–274

    Article  Google Scholar 

  • De Carvalho JCM, Aquarone E, Sato S, Brazzach ML, Moraes DA, Borzani W (1993) Fed-batch alcoholic fermentation of sugar cane blackstrap molasses: influence of the feeding rate on yeast yield and productivity. Appl Microbiol Biotechnol 38(5):596–598

    Article  Google Scholar 

  • Del Borghi M, Converti A, Parisi F, Ferraiolo G (1985) Continuous alcohol fermentation in an immobilized cell rotating disk reactor. Biotechnol Bioeng 27(6):761–768

    Article  Google Scholar 

  • Dubois M, Gilles KA, Amilton JK (1956) Colorimetric determination of sugars and related substances. Anal Chem 28:350–356

    Article  Google Scholar 

  • El Ghandoor H, Zidan HM, Khalil MM, Ismail MIM (2012) Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int J Electrochem Sci 7:5734–5745

    Google Scholar 

  • El-Gendy NS, Madian HR, Amr SSA (2013) Design and optimization of a process for sugarcane molasses fermentation by Saccharomyces cerevisiae using response surface methodology. Int J Microbiol 2013

    Google Scholar 

  • Fujimura T, Kaetsu I (1985) Nature of yeast-cells immobilized by radiation polymerization activity dependence on the molecular-motion of polymer carriers. Zeitschrift Fur Naturforschung Ca J Biosci 40(7–8):576–579

    Article  Google Scholar 

  • Ghareib M, Youssef KA, Khalil AA (1988) Ethanol tolerance of Saccharomyces cerevisiae and its relationship to lipid content and composition. Folia Microbiol 33(6):447–452

    Article  Google Scholar 

  • Göksungur Y, Zorlu N (2001) Production of ethanol from beet molasses by Ca-alginate immobilized yeast cells in a packed-bed bioreactor. Turk J Biol 25(3):265–275

    Google Scholar 

  • Gray WD (1941) Studies on the alcohol tolerance of yeasts. J Bacteriol 42(5):561

    Google Scholar 

  • Gray WD (1948) Further studies on the alcohol tolerance of yeast: its relationship to cell storage products. J Bacteriol 55(1):53

    Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  Google Scholar 

  • Hansen AC, Zhang Q, Lyne PW (2005) Ethanol–diesel fuel blends—a review. Biores Technol 96(3):277–285

    Article  Google Scholar 

  • Haynes WC, Wickerham LJ, Hesseltine CW (1955) Maintenance of cultures of industrially important microorganisms. Appl Microbiol 3(6):361

    Google Scholar 

  • Huang SH, Liao MH, Chen DH (2003) Direct binding and characterization of lipase onto magnetic nanoparticles. Biotechnol Prog 19(3):1095–1100

    Article  Google Scholar 

  • Ibeas JI, Jimenez J (1997) Mitochondrial DNA loss caused by ethanol in Saccharomyces flor yeasts. Appl Environ Microbiol 63(1):7–12

    Google Scholar 

  • Ingale S, Joshi SJ, Gupte A (2014) Production of bioethanol using agricultural waste: banana pseudo stem. Braz J Microbiol 45(3):885–892

    Article  Google Scholar 

  • Ingram LO (1976) Adaptation of membrane lipids to alcohols. J Bacteriol 125(2):670–678

    Google Scholar 

  • Ivanova V, Petrova P, Hristov J (2011) Application in the ethanol fermentation of immobilized yeast cells in matrix of alginate/magnetic nanoparticles, on chitosan-magnetite microparticles and cellulose-coated magnetic nanoparticles. Int Rev Chem Eng 3(3):289–299

    Google Scholar 

  • Joshi S, Yamazaki H (1984) Film fermenter for ethanol production by yeast immobilized on cotton cloth. Biotech Lett 6(12):797–802

    Article  Google Scholar 

  • Joshi S, Bharucha C, Jha S, Yadav S, Nerurkar A, Desai AJ (2008) Biosurfactant production using molasses and whey under thermophilic conditions. Biores Technol 99(1):195–199

    Article  Google Scholar 

  • Joshi S, Yadav S, Nerurkar A, Desai AJ (2007) Statistical optimization of medium components for the production of biosurfactant by Bacillus licheniformis K51. J Microbiol Biotechnol 17(2):313

    Google Scholar 

  • Kshirsagar SD, Waghmare PR, Loni PC, Patil SA, Govindwar SP (2015) Dilute acid pretreatment of rice straw, structural characterization and optimization of enzymatic hydrolysis conditions by response surface methodology. RSC Adv 5(58):46525–46533

    Article  Google Scholar 

  • Limtong S, Sringiew C, Yongmanitchai W (2007) Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Biores Technol 98(17):3367–3374

    Article  Google Scholar 

  • López A, Lázaro N, Marqués AM (1997) The interphase technique: a simple method of cell immobilization in gel-beads. J Microbiol Methods 30(3):231–234

    Article  Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15(4):377–390

    Article  Google Scholar 

  • Marcelle A, de Vos Betty-Jayne, Visser MS (2007) The preparation, assay and certification of aqueous ethanol reference solutions. Accred Qual Assur 12:188–193

    Article  Google Scholar 

  • McGhee JE, Carr ME, St Julian G (1984) Continuous bioconversion of starch to ethanol by calcium-alginate immobilized enzymes and yeasts. Cereal Chem (US) 61(5)

    Google Scholar 

  • Miller GL (1959) Use of DNS reagent for the measurement of reducing sugar. Anal Chem 31(1):426–428

    Article  MathSciNet  Google Scholar 

  • Mino AK (2010) Ethanol production from sugarcane in India: viability, constraints and implications, Doctoral dissertation, University of Illinois at Urbana–Champaign

    Google Scholar 

  • Mishra P, Prasad R (1989) Relationship between ethanol tolerance and fatty acyl composition of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 30(3):294–298

    Article  Google Scholar 

  • Moreno-Garrido I (2008) Microalgae immobilization: current techniques and uses. Biores Technol 99(10):3949–3964

    Article  Google Scholar 

  • Muthukrishnan S, Bhakya S, Kumar TS, Rao MV (2015) Biosynthesis, characterization and antibacterial effect of plant-mediated silver nanoparticles using Ceropegia thwaitesii–An endemic species. Ind Crops Prod 63:119–124

    Article  Google Scholar 

  • Nagashima M, Azuma M, Noguchi S (1983) Technology developments in biomass alcohol production in Japan: continuous alcohol production with immobilized microbial cells. Ann NY Acad Sci 413(1):457–468

    Article  Google Scholar 

  • Najafpour G, Younesi H, Ismail KSK (2004) Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Biores Technol 92(3):251–260

    Article  Google Scholar 

  • Nigam JN, Gogoi BK, Bezbaruah RL (1998) Alcoholic fermentation by agar-immobilized yeast cells. World J Microbiol Biotechnol 14(3):457–459

    Article  Google Scholar 

  • Nofemele Z, Shukla P, Trussler A, Permaul K, Singh S (2012) Improvement of ethanol production from sugarcane molasses through enhanced nutrient supplementation using Saccharomyces cerevisiae. J Brew Distilling 3(2):29–35

    Google Scholar 

  • Nyirő-Kósa I, Rečnik A, Pósfai M (2012) Novel methods for the synthesis of magnetite nanoparticles with special morphologies and textured assemblages. J Nanopart Res 14(10):1–10

    Article  Google Scholar 

  • Okita WB, Bonham DB, Gainer JL (1985) Covalent coupling of microorganisms to a cellulosic support. Biotechnol Bioeng 27(5):632–637

    Article  Google Scholar 

  • Osawemwenze LA, Adogbo GM (2013) Ethanol synthesis using yeast anchored on calcium alginate and clay support. Int J Sci Eng Res 4(4):479–484

    Google Scholar 

  • Padman AJ, Henderson J, Hodgson S, Rahman PK (2014) Biomediated synthesis of silver nanoparticles using Exiguobacterium mexicanum. Biotech Lett 36:2079–2084

    Article  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36(13):R167

    Article  Google Scholar 

  • Prakasham RS, Kuriakose B, Ramakrishna SV (1999) The influence of inert solids on ethanol production by Saccharomyces cerevisiae. Appl Biochem Biotechnol 82(2):127–134

    Article  Google Scholar 

  • Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16(8):675–729

    Article  Google Scholar 

  • Priyadarshini E, Pradhan N, Sukla LB, Panda PK (2014) Controlled synthesis of gold nanoparticles using Aspergillus terreus IF0 and its antibacterial potential against gram negative pathogenic bacteria. J Nanotechnol 653198:9. https://doi.org/10.1155/2014/653198

  • Raheem A, Wakg WA, Yap YT, Danquah MK, Harun R (2015) Optimization of the microalgae Chlorella vulgaris for syngas production using central composite design. RSC Adv 5(88):71805–71815

    Article  Google Scholar 

  • Raju SS, Shinoj P, Joshi PK (2009) Sustainable development of biofuels: prospects and challenges. Econ Polit Wkly 65–72

    Google Scholar 

  • Ray S, Goldar A, Miglani S (2012) The ethanol blending policy in India. Econ Political Wkly 47(1):23–35

    Google Scholar 

  • Roy K, Sarkar CK, Ghosh CK (2014) Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (Saccharomyces cerevisiae) extract. Appl Nanosci 1–7

    Google Scholar 

  • Šafařı́k I, Šafařı́ková M (1999) Use of magnetic techniques for the isolation of cells. J Chromatogr B Biomed Sci Appl 722(1):33–53

    Article  Google Scholar 

  • Šafařík I, Šafaříková M (2002) Magnetic nanoparticles and biosciences. Springer, Vienna, pp 1–23

    Google Scholar 

  • Šafaříková M, Šafařik I (2001) Immunomagnetic separation of Escherichia coli O26, O111 and O157 from vegetables. Lett Appl Microbiol 33(1):36–39

    Article  Google Scholar 

  • Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA (2015) Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol 99:4579–4593

    Article  Google Scholar 

  • Tartaj P, Morales MP, Veintemillas-Verdaguer S, Gonzalez-Carreño T, Serna CJ (2006) Synthesis, properties and biomedical applications of magnetic nanoparticles. Handb Magn Mater 16(5):403–482

    Article  Google Scholar 

  • Turhan O, Isci A, Mert B, Sakiyan O, Donmez S (2015) Optimization of ethanol production from microfluidized wheat straw by response surface methodology. Prep Biochem Biotechnol 45(8):785–795

    Article  Google Scholar 

  • Vanaja M, Paulkumar K, Baburaja M, Rajeshkumar S, Gnanajobitha G, Malarkodi C, Sivakavinesan M, Annadurai G (2014) Degradation of methylene blue using biologically synthesized silver nanoparticles. Bioinorg Chem Appl 742346. https://doi.org/10.1155/2014/742346

  • Wang LH, Hsie MC, Chang CY, Kuo YC, Sang SL, Hsiao HD, Chen HC (1984) Improvement of ethanol productivity from cane molasses by a process using a high yeast cell concentration. ASPAC, Food & Fertilizer Technology Center

    Google Scholar 

  • Wyman CE, Hinman ND (1990) Ethanol. Appl Biochem Biotechnol 24(1):735–753

    Article  Google Scholar 

Download references

Acknowledgements

SI and VP would like to thank ARIBAS and CVM, and SJ would like to acknowledge Sultan Qaboos University for providing the research facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanket J. Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ingale, S., Parnandi, V.A., Joshi, S.J. (2019). Bioethanol Production Using Saccharomyces cerevisiae Immobilized in Calcium Alginate–Magnetite Beads and Application of Response Surface Methodology to Optimize Bioethanol Yield. In: Srivastava, N., Srivastava, M., Mishra, P., Upadhyay, S., Ramteke, P., Gupta, V. (eds) Sustainable Approaches for Biofuels Production Technologies. Biofuel and Biorefinery Technologies, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-94797-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94797-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94796-9

  • Online ISBN: 978-3-319-94797-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics