Skip to main content

The Dwelling of the Spectral Action

  • Chapter
  • First Online:
Spectral Action in Noncommutative Geometry

Part of the book series: SpringerBriefs in Mathematical Physics ((BRIEFSMAPHY,volume 27))

  • 410 Accesses

Abstract

The natural habitat of the spectral action is Connes’ noncommutative geometry. Therefore, it is indispensable to lay out its rudiments encoded in the notion of a spectral triple. We will, however, exclusively focus on the aspects of the structure, which are relevant for the spectral action computations. These include i.a. the abstract pseudodifferential calculus, the dimension spectrum and noncommutative integrals, based on both the Wodzicki residue and the Dixmier trace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One could in principle also allow for essential singularities of \(\zeta _{T,D}\), as long as they are isolated.

  2. 2.

    Using the notation of [37] we have for \(k \ge 1\).

  3. 3.

    For any \(s \in \mathbb {C}\), \(n \in \mathbb {N}\), with the convention . See [1, Sect. 24.1.3].

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. Courier Dover Publications, USA (2012)

    MATH  Google Scholar 

  2. Andrianov, A., Kurkov, M., Lizzi, F.: Spectral action, Weyl anomaly and the Higgs-dilaton potential. J. High Energy Phys. 10(2011)001

    Google Scholar 

  3. Andrianov, A., Lizzi, F.: Bosonic spectral action induced from anomaly cancellation. J. High Energy Phys. 5(2010)057

    Google Scholar 

  4. Avramidi, I.: Heat Kernel Method and its Applications. Birkhäuser, Basel (2015)

    Book  MATH  Google Scholar 

  5. Ball, A., Marcolli, M.: Spectral action models of gravity on packed Swiss cheese cosmology. Class. Quantum Gravity 33(11), 115018 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Barrett, J.: Lorentzian version of the noncommutative geometry of the standard model of particle physics. J. Math. Phys. 48(1), 012303 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Beenakker, W., van den Broek, T., van Suijlekom, W.D.: Supersymmetry and Noncommutative Geometry. SpringerBriefs in Mathematical Physics. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  8. Bhowmick, J., Goswami, D., Skalski, A.: Quantum isometry groups of 0-dimensional manifolds. Trans. Am. Math. Soc. 363(2), 901–921 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boyd, J.P.: The Devil’s invention: asymptotics, superasymptotics and hyperasymptotic series. Acta Appl. Math. 56, 1–98 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bytsenko, A.A., Cognola, G., Moretti, V., Zerbini, S., Elizalde, E.: Analytic Aspects of Quantum Fields. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  11. Ćaćić, B.: A reconstruction theorem for almost-commutative spectral triples. Lett. Math. Phys. 100(2), 181–202 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Carey, A.L., Gayral, V., Rennie, A., Sukochev, F.: Integration on locally compact noncommutative spaces. J. Funct. Anal. 263, 383–414 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A.: The local index formula in semifinite Von Neumann algebras I: spectral flow. Adv. Math. 202(2), 451–516 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chamseddine, A.H., Connes, A.: The spectral action principle. Commun. Math. Phys. 186(3), 731–750 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Chamseddine, A.H., Connes, A.: Scale invariance in the spectral action. J. Math. Phys. 47, 063504 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Chamseddine, A.H., Connes, A.: Quantum gravity boundary terms from the spectral action on noncommutative space. Phys. Rev. Lett. 99, 071302 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Chamseddine, A.H., Connes, A.: The uncanny precision of the spectral action. Commun. Math. Phys. 293(3), 867–897 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Chamseddine, A.H., Connes, A.: Noncommutative geometric spaces with boundary: spectral action. J. Geom. Phys. 61, 317–332 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Chamseddine, A.H., Connes, A.: Spectral action for Robertson-Walker metrics. J. High Energy Phys. 10(2012)101

    Google Scholar 

  20. Chamseddine, A.H., Connes, A., Marcolli, M.: Gravity and the standard model with neutrino mixing. Adv. Theor. Math. Phys. 11(6), 991–1089 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chamseddine, A.H., Connes, A., van Suijlekom, W.D.: Inner fluctuations in noncommutative geometry without the first order condition. J. Geom. Phys. 73, 222–234 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Christensen, E., Ivan, C.: Spectral triples for AF \(C^*\)-algebras and metrics on the Cantor set. J. Oper. Theory 56, 17–46 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Christensen, E., Ivan, C., Lapidus, M.L.: Dirac operators and spectral triples for some fractal sets built on curves. Adv. Math. 217(1), 42–78 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Christensen, E., Ivan, C., Schrohe, E.: Spectral triples and the geometry of fractals. J. Noncommutative Geom. 6(2), 249–274 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cipriani, F., Guido, D., Isola, T., Sauvageot, J.L.: Spectral triples for the Sierpiński gasket. J. Funct. Anal. 266(8), 4809–4869 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Connes, A.: The action functional in non-commutative geometry. Commun. Math. Phys. 117(4), 673–683 (1988)

    Article  ADS  MATH  Google Scholar 

  27. Connes, A.: Compact metric spaces, Fredholm modules, and hyperfiniteness. Ergod. Theory Dyn. Syst. 9(2), 207–220 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Connes, A.: Geometry from the spectral point of view. Lett. Math. Phys. 34(3), 203–238 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Connes, A.: Noncommutative Geometry. Academic Press, New York (1995)

    MATH  Google Scholar 

  30. Connes, A.: Noncommutative geometry and reality. J. Math. Phys. 36, 6194–6231 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Connes, A.: Cyclic cohomology, noncommutative geometry and quantum group symmetries. In: Doplicher, S., Longo, R. (eds.) Noncommutative Geometry. Lecture Notes in Mathematics, vol. 1831, pp. 1–71. Springer, Berlin (2004)

    Chapter  MATH  Google Scholar 

  32. Connes, A.: Cyclic cohomology, quantum group symmetries and the local index formula for \(SU_q(2)\). J. Inst. Math. Jussieu 3(1), 17–68 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Connes, A.: On the spectral characterization of manifolds. J. Noncommutative Geom. 7(1), 1–82 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Connes, A., Chamseddine, A.H.: Inner fluctuations of the spectral action. J. Geom. Phys. 57(1), 1–21 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Connes, A., Marcolli, M.: Noncommutative Geometry, Quantum Fields and Motives. Colloquium Publications, vol. 55. American Mathematical Society, Providence (2008)

    Google Scholar 

  36. Connes, A., Marcolli, M.: A walk in the noncommutative garden. In: Khalkhali, M., Marcolli, M. (eds.) An Invitation to Noncommutative Geometry, pp. 1–128. World Scientific Publishing Company, Singapore (2008)

    MATH  Google Scholar 

  37. Connes, A., Moscovici, H.: The local index formula in noncommutative geometry. Geom. Funct. Anal. GAFA 5(2), 174–243 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. Connes, A., Moscovici, H.: Modular curvature for noncommutative two-tori. J. Am. Math. Soc. 27(3), 639–684 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Connes, A., Tretkoff, P.: The Gauss-Bonnet theorem for the noncommutative two torus. In: Consani, C., Connes, A. (eds.) Noncommutative Geometry, Arithmetic and Related Topics, pp. 141–158. The Johns Hopkins University Press, Baltimore (2011)

    MATH  Google Scholar 

  40. Cordes, H.: The Technique of Pseudodifferential Operators. London Mathematical Society Lecture Note Series 202. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  41. D’Andrea, F., Dąbrowski, L.: Local index formula on the equatorial Podleś sphere. Lett. Math. Phys. 75(3), 235–254 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. D’Andrea, F., Kurkov, M.A., Lizzi, F.: Wick rotation and Fermion doubling in noncommutative geometry. Phys. Rev. D 94, 025030 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  43. Dąbrowski, L., D’Andrea, F., Landi, G., Wagner, E.: Dirac operators on all Podleś quantum spheres. J. Noncommutative Geom. 1(2), 213–239 (2007)

    MathSciNet  MATH  Google Scholar 

  44. Dąbrowski, L., Landi, G., Paschke, M., Sitarz, A.: The spectral geometry of the equatorial Podleś sphere. Comptes Rendus Math. 340(11), 819–822 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Dąbrowski, L., Landi, G., Sitarz, A., van Suijlekom, W.D., Várilly, J.C.: The Dirac operator on \(SU_{q}(2)\). Commun. Math. Phys. 259(3), 729–759 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. van den Dungen, K., van Suijlekom, W.D.: Particle physics from almost-commutative spacetimes. Rev. Math. Phys. 24(09) (2012)

    Google Scholar 

  47. Dixmier, J.: Existence de traces non normales. C. R. Acad. Sci. Paris 262A, 1107–1108 (1966)

    Google Scholar 

  48. Eckstein, M.: Spectral action – beyond the almost commutative geometry. Ph.D. thesis, Jagiellonian University (2014)

    Google Scholar 

  49. Eckstein, M., Iochum, B., Sitarz, A.: Heat trace and spectral action on the standard Podleś sphere. Commun. Math. Phys. 332(2), 627–668 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Elizalde, E., Odintsov, S., Romeo, A., Bytsenko, A.A., Zerbini, S.: Zeta Regularization Techniques with Applications. World Scientific, Singapore (1994)

    Book  MATH  Google Scholar 

  51. Essouabri, D., Iochum, B., Levy, C., Sitarz, A.: Spectral action on noncommutative torus. J. Noncommutative Geom. 2(1), 53–123 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  52. Farnsworth, S.: The graded product of real spectral triples. J. Math. Phys. 58(2), 023507 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Friedrich, T.: Dirac Operators in Riemannian Geometry. Graduate Studies in Mathematics, vol. 25. American Mathematical Society, Providence (2000)

    Google Scholar 

  54. Gayral, V., Gracia-Bondía, J.M., Iochum, B., Schücker, T., Várilly, J.C.: Moyal planes are spectral triples. Commun. Math. Phys. 246(3), 569–623 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Gayral, V., Iochum, B.: The spectral action for Moyal planes. J. Math. Phys. 46(4), 043503 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Gayral, V., Wulkenhaar, R.: Spectral geometry of the Moyal plane with harmonic propagation. J. Noncommutative Geom. 7(4), 939–979 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  57. Gilkey, P.B.: Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, Studies in Advanced Mathematics, 2nd edn. CRC Press, USA (1995)

    MATH  Google Scholar 

  58. Gilkey, P.B.: Asymptotic Formulae in Spectral Geometry. CRC Press, USA (2004)

    MATH  Google Scholar 

  59. Gilkey, P.B., Grubb, G.: Logarithmic terms in asymptotic expansions of heat operator traces. Commun. Partial Differ. Equ. 23(5–6), 777–792 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  60. Gracia-Bondía, J.M., Várilly, J.C., Figueroa, H.: Elements of Noncommutative Geometry. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  61. Guido, D., Isola, T.: Dimensions and singular traces for spectral triples, with applications to fractals. J. Funct. Anal. 203(2), 362–400 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  62. Guido, D., Isola, T.: Dimensions and spectral triples for fractals in \(\rm R\mathit{}^N\). In: Boca, F., Bratteli, O., Longo, R., Siedentop, H. (eds.) Advances in Operator Algebras and Mathematical Physics. Theta Series in Advanced Mathematics, pp. 89–108. Theta, Bucharest (2005)

    Google Scholar 

  63. Guido, D., Isola, T.: New results on old spectral triples for fractals. In: Alpay, D., Cipriani, F., Colombo, F., Guido, D., Sabadini, I., Sauvageot, J.L. (eds.) Noncommutative Analysis, Operator Theory and Applications, pp. 261–270. Birkhäuser, Basel (2016)

    Chapter  Google Scholar 

  64. Guillemin, V.: A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues. Adv. Math. 55, 131–160 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  65. Haag, R.: Local Quantum Physics: Fields, Particles. Algebras. Theoretical and Mathematical Physics. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  66. Higson, N.: The local index formula in noncommutative geometry. In: Karoubi, M., Kuku, A., Pedrini, C. (eds.) Contemporary Developments in Algebraic K-Theory. ICTP Lecture Notes Series, vol. 15, pp. 443–536 (2004)

    Google Scholar 

  67. Iochum, B.: Spectral geometry. In: Cardonna, A., Neira-Jiménez, C., Ocampo, H., Paycha, S., Reyes-Lega, A. (eds.) Geometric, Algebraic and Topological Methods for Quantum Field Theory, Villa de Leyva (Columbia), pp. 3–59. World Scientific, Singapore (2011). An updated, more complete version. arXiv:1712.05945 [math-ph]

  68. Iochum, B., Levy, C.: Spectral triples and manifolds with boundary. J. Funct. Anal. 260, 117–134 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  69. Iochum, B., Levy, C.: Tadpoles and commutative spectral triples. J. Noncommutative Geom. 5(3), 299–329 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  70. Iochum, B., Levy, C., Vassilevich, D.: Global and local aspects of spectral actions. J. Phys. A: Math. Theor. 45(37), 374020 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  71. Iochum, B., Levy, C., Vassilevich, D.: Spectral action beyond the weak-field approximation. Commun. Math. Phys. 316(3), 595–613 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Iochum, B., Levy, C., Vassilevich, D.: Spectral action for torsion with and without boundaries. Commun. Math. Phys. 310(2), 367–382 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Iochum, B., Schücker, T., Stephan, C.: On a classification of irreducible almost commutative geometries. J. Math. Phys. 45(12), 5003–5041 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Kellendonk, J., Savinien, J.: Spectral triples from stationary Bratteli diagrams. Mich. Math. J. 65, 715–747 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  75. Khalkhali, M.: Basic Noncommutative Geometry. European Mathematical Society, Zürich (2009)

    Book  MATH  Google Scholar 

  76. Krajewski, T.: Classification of finite spectral triples. J. Geom. Phys. 28(1), 1–30 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Kurkov, M., Lizzi, F., Sakellariadou, M., Watcharangkool, A.: Spectral action with zeta function regularization. Phys. Rev. D 91, 065013 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  78. Lai, A., Teh, K.: Spectral action for a one-parameter family of Dirac operators on \(SU(2)\) and \(SU(3)\). J. Math. Phys. 54(022302) (2013)

    Google Scholar 

  79. Lapidus, M.L., van Frankenhuijsen, M.: Fractal Geometry. Complex Dimensions and Zeta Functions. Springer, New York (2006)

    MATH  Google Scholar 

  80. Lapidus, M.L., Sarhad, J.: Dirac operators and geodesic metric on the harmonic Sierpinski gasket and other fractal sets. J. Noncommutative Geom. 8, 947–985 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  81. Lesch, M.: Operators of Fuchs Type, Conical Singularities, and Asymptotic Methods. Teubner-Texte zur Mathematik, vol. 136. Teubner (1997)

    Google Scholar 

  82. Lescure, J.M.: Triplets spectraux pour les variétés à singularité conique isolée. Bulletin de la Société Mathématique de France 129(4), 593–623 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  83. Lord, S., Sedaev, A., Sukochev, F.: Dixmier traces as singular symmetric functionals and applications to measurable operators. J. Funct. Anal. 224, 72–106 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  84. Lord, S., Sukochev, F., Zanin, D.: Singular Traces: Theory and Applications. De Gruyter Studies in Mathematics. Walter de Gruyter, Berlin (2012)

    Book  MATH  Google Scholar 

  85. Marcolli, M.: Building cosmological models via noncommutative geometry. Int. J. Geom. Methods Mod. Phys. 08(05), 1131–1168 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  86. Marcolli, M.: Noncommutative Cosmology. World Scientific, Singapore (2017)

    MATH  Google Scholar 

  87. Marcolli, M.: Spectral action gravity and cosmological models. Comptes Rendus Phys. 18, 226–234 (2017)

    Article  ADS  Google Scholar 

  88. Marcolli, M., Pierpaoli, E., Teh, K.: The spectral action and cosmic topology. Commun. Math. Phys. 304(1), 125–174 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. Marcolli, M., Pierpaoli, E., Teh, K.: The coupling of topology and inflation in noncommutative cosmology. Commun. Math. Phys. 309(2), 341–369 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. Nelson, W., Sakellariadou, M.: Inflation mechanism in asymptotic noncommutative geometry. Phys. Lett. B 680, 263–266 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  91. Novozhilov, Y., Vassilevich, D.: Induced classical gravity. Lett. Math. Phys. 21, 253–271 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. Olczykowski, P., Sitarz, A.: On spectral action over Bieberbach manifolds. Acta Phys. Pol. B 42(6) (2011)

    Google Scholar 

  93. Pal, A., Sundar, S.: Regularity and dimension spectrum of the equivariant spectral triple for the odd-dimensional quantum spheres. J. Noncommutative Geom. 4(3), 389–439 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  94. Pfäffle, H., Stephan, C.: The spectral action action for Dirac operators with skew-symmetric torsion. Commun. Math. Phys. 300, 877–888 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. Pfäffle, H., Stephan, C.: The Holst action by the spectral action principle. Commun. Math. Phys. 307, 261–273 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  96. Pfäffle, H., Stephan, C.: On gravity, torsion and the spectral action principle. J. Funct. Anal. 262, 1529–1565 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  97. Reed, M., Simon, B.: Methods of Modern Mathematical Physics: Functional Analysis, vol. 1. Academic Press, Cambridge (1972)

    MATH  Google Scholar 

  98. Rennie, A.: Smoothness and locality for nonunital spectral triples. K-Theory 28(2), 127–165 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  99. Rennie, A.: Summability for nonunital spectral triples. K-Theory 31(1), 71–100 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  100. Sakellariadou, M.: Cosmological consequences of the noncommutative spectral geometry as an approach to unification. J. Phys. Conf. Ser. 283(1), 012031 (2011)

    Article  Google Scholar 

  101. Sakellariadou, M.: Aspects of the bosonic spectral action. J. Phys. Conf. Ser. 631, 012012 (2015)

    Article  Google Scholar 

  102. Sitarz, A.: Spectral action and neutrino mass. Europhys. Lett. 86(1), 10007 (2009)

    Article  ADS  Google Scholar 

  103. Sitarz, A., Zając, A.: Spectral action for scalar perturbations of Dirac operators. Lett. Math. Phys. 98(3), 333–348 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  104. van Suijlekom, W.D.: Noncommutative Geometry and Particle Physics. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  105. Teh, K.: Dirac spectra, summation formulae, and the spectral action. Ph.D. thesis, California Institute of Technology (2013)

    Google Scholar 

  106. Teh, K.: Nonperturbative spectral action of round coset spaces of \(SU(2)\). J. Noncommutative Geom. 7, 677–708 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  107. Usachev, A., Sukochev, F., Zanin, D.: Singular traces and residues of the \(\zeta \)-function. Indiana Univ. Math. J. 66, 1107–1144 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  108. Várilly, J.C.: An Introduction to Noncommutative Geometry. European Mathematical Society, Zürich (2006)

    Book  MATH  Google Scholar 

  109. Várilly, J.C.: Dirac operators and spectral geometry (2006). Lecture notes available at https://www.impan.pl/swiat-matematyki/notatki-z-wyklado~/varilly_dosg.pdf

  110. Vassilevich, D.V.: Heat Kernel expansion: user’s manual. Phys. Rep. 388(5), 279–360 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  111. Wodzicki, M.: Local invariants of spectral asymmetry. Invent. Math. 75(1), 143–177 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  112. Wodzicki, M.: Noncommutative residue Chapter I. Fundamentals. In: Manin, Y. (ed.) K-Theory, Arithmetic and Geometry. Lecture Notes in Mathematics, pp. 320–399. Springer, Berlin (1987). https://doi.org/10.1007/BFb0078372

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Eckstein .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eckstein, M., Iochum, B. (2018). The Dwelling of the Spectral Action. In: Spectral Action in Noncommutative Geometry. SpringerBriefs in Mathematical Physics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-94788-4_1

Download citation

Publish with us

Policies and ethics