Skip to main content

Multi Agent System Application for Electrical Load Shedding Management: Experiment in Senegal Power Grid

  • Conference paper
  • First Online:
Highlights of Practical Applications of Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection (PAAMS 2018)

Abstract

This paper proposes a multi-agent approach for power grid load shedding programming. Known as the most complex machine ever made by man, power grid is an essential pillar of all national economies. Its complexity and size make it vulnerable. Load shedding is usually an emergency control process against electrical networks with low production capacity. In this study, a system named MASLA, a Multi Agent System based Load Shedding Algorithm, which explores the load shedding planning is proposed. In electrical distribution system, power is delivered to customers through feeders which are a combination of electrical lines and medium voltage transformer substations. Depending on its power, a feeder may serve very large number of customers of different types (industrial, residential, …). Hence, Feeder Agent and Load Agent are defined in a power grid and a negotiation takes place between them, considering customer’s level of priority to select which one will be significantly impacted in a possible emergency outage. The model is implemented using a multi agent platform and a case study using the Senegalese power grid revealed that the proposed approach is useful and feasible for companies facing frequent disruption of electricity supply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schewe, P.: The Grid: A Journey Through the Heart of Our Electrified World. J. Henry Press, Washington, D.C (2007)

    Google Scholar 

  2. Mei, S., Zhang, X., Cao, M.: Power Grid Complexity. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-16211-4

    Book  Google Scholar 

  3. Ameli, M.T., Moslehpour, S., Khoshmakani, H.: Presentation and comparison of the various methods of load-shedding for frequency control in Iran power networks. In: IJME-INTERTECH Conference (2006), pp. 315–320 (2006). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.607.7554&rep=rep1&type=pdf

  4. Diouf, E.: Frequency control ancillary services in large interconnected systems. Ph.D. dissertation. The University of Manchester (2013)

    Google Scholar 

  5. ENTSOE: Entsoe network code on emergency and restoration, 25 March 2015. https://www.entsoe.eu/major-projects/network-code-development/emergency-and-restoration/Pages/default.aspx. Accessed 12 Dec 2016

  6. Zhang, Z., Wang, Z., Fang, P.: Study on emergency load shedding based on frequency and voltage stability. Int. J. Control Autom. 7(2), 119–130 (2014). https://doi.org/10.14257/ijca.2014.7.2.12

    Article  Google Scholar 

  7. Lu, M., ZainalAbidin, W., Masri, T., Lee, D., Chen, S.: Underfrequency load shedding (UFLS) schemes–a survey. Int. J. Appl. Eng. Res. 11(1), 456–472 (2016). https://www.ripublication.com/ijaer16/ijaerv11n1_70.pdf

    Google Scholar 

  8. Wikipedia: Rolling blackout—Wikipedia, the free encyclopaedia (2016). https://en.wikipedia.org/w/index.php?title=RollingBlackout&oldid=750326314

  9. Senelec: Rapport annuel mouvements d’energie (2014)

    Google Scholar 

  10. Laghari, J.A., Mokhlis, H., Bakar, A.H.A., et al.: Application of computational intelligence techniques for load shedding in power systems: a review. Energ. Convers. Manag. 75, 130–140 (2013). http://dx.doi.org/10.1016/j.enconman.2013.06.010

    Article  Google Scholar 

  11. de Oliveira Saraiva, F., Asada, E.N.: Multi-agent systems applied to topological reconfiguration of smart power distribution systems. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 2812–2819. IEEE (2014). https://doi.org/10.1109/ijcnn.2014.6889791

  12. McArthur, S.D., Davidson, E.M., Catterson, V.M., Dimeas, A.L., Hatziargyriou, N.D., Ponci, F., Funabashi, T.: Multi-agent systems for power engineering applications part i: Concepts, approaches, and technical challenges. IEEE Trans. Power Syst. 22(4), 1743–1752 (2007). https://doi.org/10.1109/TPWRS.2007.908471

    Article  Google Scholar 

  13. McArthur, S.D., Davidson, E.M., Catterson, V.M., Dimeas, A.L., Hatziargyriou, N.D., Ponci, F., Funabashi, T.: Multi-agent systems for power engineering applications part ii: technologies, standards, and tools for building multi-agent systems. IEEE Trans. Power Syst. 22(4), 1753–1759 (2007). https://doi.org/10.1109/TPWRS.2007.908472

    Article  Google Scholar 

  14. Moradi, M.H., Razini, S., Hosseinian, S.M.: State of art of multiagent systems in power engineering: a review. Renew. Sustain. Energy Rev. 58, 814–824 (2016). https://doi.org/10.1016/j.rser.2015.12.339

    Article  Google Scholar 

  15. Pipattanasomporn, M., Feroze, H., Rahman, S.: Multi-agent systems in a distributed smart grid: design and implementation. In: Power Systems Conference and Exposition, 2009 PSCE 2009 IEEE/PES, pp. 1–8. IEEE (2009). https://doi.org/10.1109/psce.2009.4840087

  16. Logenthiran, T., Srinivasan, D., Khambadkone, A.M., Aung, H.N.: Multiagent system for real-time operation of a microgrid in real-time digital simulator. IEEE Trans. Smart Grid 3(2), 925–933 (2012). https://doi.org/10.1109/TSG.2012.2189028

    Article  Google Scholar 

  17. Wang, H.: Multi-agent co-ordination for the secondary voltage control in power-system contingencies. IEE Proc.-Gener. Transm. Distrib. 148(1), 61–66 (2001). https://doi.org/10.1049/ip-gtd:20010025

    Article  Google Scholar 

  18. Rehtanz, C.: Autonomous Systems and Intelligent Agents in Power System Control and Operation. Springer, Berlin (2003). https://doi.org/10.1007/978-3-662-05955-5

    Book  Google Scholar 

  19. Choi, Y., Lim, Y., Kim, H.M.: Optimal load shedding for maximizing satisfaction in an Islanded microgrid. Energies 10(1), 45 (2017). https://doi.org/10.3390/en10010045

    Article  Google Scholar 

  20. Lim, Y., Park, J., Kim, H.-M., Kinoshita, T.: A bargaining approach to optimizing load shedding in islanded microgrid operation. IETE Tech. Rev. 30, 483–489 (2013). https://doi.org/10.4103/0256-4602.125669

    Article  Google Scholar 

  21. Lim, Y., Kim, H.M., Kinoshita, T.: Distributed load-shedding system for agent-based autonomous microgrid operations. Energies 7(1), 385–401 (2014). https://doi.org/10.3390/en7010385

    Article  Google Scholar 

  22. Wang, P., Billinton, R.: Optimum load-shedding technique to reduce the total customer interruption cost in a distribution system. IEE Proc.-Gener. Transm. Distrib. 147(1), 51–56 (2000). https://doi.org/10.1049/ip-gtd:20000002

    Article  Google Scholar 

  23. Wikipedia: Knapsack problem—Wikipedia, the free encyclopaedia (2016). https://en.wikipedia.org/w/index.php?title=Knapsackproblem&oldid=753008280. Accessed 4 Dec 2016

  24. Bernhard, K., Vygen, J.: Combinatorial Optimization: Theory and Algorithms. Springer, Heidelberg (2008). ISBN 978-3-540-71844-4

    Google Scholar 

  25. Kravari, K., Bassiliades, N.: A survey of agent platforms. J. Artif. Soc. Soc. Simul. 18(1), 11 (2015). https://doi.org/10.18564/jasss.2661

    Article  Google Scholar 

  26. GAMA Platform: Documentation sur la plateforme gama (2016). https://github.com/gama-platform/gama/wiki. Accessed 4 Dec 2016

  27. Musa, B.: Outage analysis on distribution feeder in North East Nigeria. J. Multi. Eng. Sci. Technol. (JMEST) 2(1), 149–152 (2015). ISSN: 3159-0040

    MathSciNet  Google Scholar 

  28. Onishi, N.: Weak power grids in Africa’s stunt economies and fire up tempers depending on their system size, system inertia and generation mix (2015). http://www.nytimes.com/2015/07/03/world/africa/weak-power-grids-in-africa-stunteconomies-and-fire-up-tempers.html. Accessed 01 Dec 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Al Mansour Kebe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kebe, M.A.M., Ndiaye, M.L., Lishou, C. (2018). Multi Agent System Application for Electrical Load Shedding Management: Experiment in Senegal Power Grid. In: Bajo, J., et al. Highlights of Practical Applications of Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection. PAAMS 2018. Communications in Computer and Information Science, vol 887. Springer, Cham. https://doi.org/10.1007/978-3-319-94779-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94779-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94778-5

  • Online ISBN: 978-3-319-94779-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics