Skip to main content

Abstract

The economic impact of fraud is wide and fraud can be a critical problem when the prevention procedures are not robust. In this paper we create a model to detect fraudulent transactions, and then use a classification algorithm to assess if the agent is fraud prone or not. The model (BOND) is based on the analytics of an economic network of agents of three types: individuals, businesses and financial intermediaries. From the dataset of transactions, a sliding window of rows previously aggregated per agent has been used and machine learning (classification) algorithms have been applied. Results show that it is possible to predict the behavior of agents, based on previous transactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. University of Houston system, Administrative Memorandum, 07.A.04 (2000). http://www.uh.edu/af/universityservices/policies/sam/7InfoServices/7A4.pdf

  2. Bolton, R.J., Hand, D.J., Provost, F., Breiman, L.: Statistical fraud detection: a review. Stat. Sci. 17(3), 235–249 (2002)

    Article  MathSciNet  Google Scholar 

  3. Button, M., Gee, J., Brooks, G.: Measuring the cost of fraud: an opportunity for the new competitive advantage. J. Financ. Crime 19(1), 65–75 (2012)

    Article  Google Scholar 

  4. Choo, K.K.R.: The cyber threat landscape: challenges and future research directions. Comput. Secur. 30(8), 719–731 (2011)

    Article  Google Scholar 

  5. Colladon, A.F., Remondi, E.: Using social network analysis to prevent money laundering. Expert Syst. Appl. 67, 49–58 (2017)

    Article  Google Scholar 

  6. Dheepa, V., Dhanapal, R.: Analysis of credit card fraud detection methods. Int. J. Recent Trends Eng. 2(3), 126–128 (2009)

    Google Scholar 

  7. Enke, D., Thawornwong, S.: The use of data mining and neural networks for forecasting stock market returns. Expert Syst. Appl. 29(4), 927–940 (2005)

    Article  Google Scholar 

  8. Ezawa, K., Singh, M., Norton, S.: Learning goal-oriented Bayesian networks for telecommunications risk management. In: 13th International Conference on Machine Learning, pp. 139–147 (1996)

    Google Scholar 

  9. Friedman, N., Geiger, D., Goldszmidt, M., Provan, G., Langley, P., Smyth, P.: Bayesian network classifiers. Mach. Learn. 29, 131–163 (1997)

    Article  Google Scholar 

  10. Hogsett III, R.M., Radig, W.J.: Employee rime: the cost and some control measures. Rev. Bus. 16(2), 9 (1994)

    Google Scholar 

  11. Huang, W., An, Y., Du, W.: A multi-agent-based distributed intrusion detection system. In: Advanced Computer Theory and Engineering (ICACTE), vol. 3, pp. 141–143 (2010)

    Google Scholar 

  12. Macal, C.M., North, M.J.: Tutorial on agent-based modeling and simulation. In: Proceedings of the 37th Conference on Winter Simulation, pp. 2–15 (2005)

    Google Scholar 

  13. Institute of Internal Auditors: Managing the business risk of fraud: a practical guide (2008)

    Google Scholar 

  14. Neil, M., Fenton, N., Tailor, M.: Using Bayesian networks to model expected and unexpected operational losses. Risk Anal. 25(4), 963–972 (2005)

    Article  Google Scholar 

  15. Panigrahi, S., Kundu, A., Sural, S., Majumdar, A.K.: Credit card fraud detection: a fusion approach using Dempster-Shafer theory and Bayesian learning. Inf. Fusion 10(4), 354–363 (2009)

    Article  Google Scholar 

  16. Phua, C., Lee, V., Smith, K., Gayler, R.: A comprehensive survey of data mining-based fraud detection research. Monash University (2010)

    Google Scholar 

  17. Prodromidis, A.L., Stolfo, S.J.: Agent-based distributed learning applied to fraud detection. In: Sixteenth National Conference on Artificial Intelligence (1999)

    Google Scholar 

  18. Schnatterly, K.: Increasing firm value through detection and prevention of white-collar crime. Strateg. Manag. J. 24(7), 587–614 (2003)

    Article  Google Scholar 

  19. Shamshirband, S., Anuar, N.B., Kiah, M.L.M., Patel, A.: An appraisal and design of a multi-agent system based cooperative wireless intrusion detection computational intelligence technique. Eng. Appl. Artif. Intell. 26(9), 2105–2127 (2013)

    Article  Google Scholar 

  20. Sun, L., Shenoy, P.P.: Using Bayesian networks for bankruptcy prediction: some methodological issues. Eur. J. Oper. Res. 180(2), 738–753 (2007)

    Article  Google Scholar 

  21. Tuyls, K., Maes, S., Vanschoenwinkel, B.: Credit card fraud detection using Bayesian and neural networks. In: Proceedings of the 1st International NAISO Congress on Neuro Fuzzy Technologies, pp. 261–270 (2002)

    Google Scholar 

  22. Vatis, M.: The next battlefield. Harv. Int. Rev. 28(3), 56 (2006)

    Google Scholar 

  23. Wilhite, A.: Economic activity on fixed networks. In: Tesfatsion, L., Judd, K.L. (eds.) Handbook of Computational Economics, vol. 2, pp. 1013–1045. Elsevier, Amsterdam (2006)

    Google Scholar 

  24. Zhu, X.D., Huang, Z.Q., Zhou, H.: Design of a multi-agent based intelligent intrusion detection system. In: 2006 Proceedings of the 1st International Symposium on Pervasive Computing and Applications, pp. 290–295 (2006)

    Google Scholar 

  25. Namatame, A., Chen, S.H.: Agent-Based Modelling and Network Dynamics. Oxford University Press, Oxford (2016)

    Book  Google Scholar 

  26. Wilensky, U.: NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to João Brito or Pedro Campos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brito, J., Campos, P., Leite, R. (2018). An Agent-Based Model for Detection in Economic Networks. In: Bajo, J., et al. Highlights of Practical Applications of Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection. PAAMS 2018. Communications in Computer and Information Science, vol 887. Springer, Cham. https://doi.org/10.1007/978-3-319-94779-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94779-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94778-5

  • Online ISBN: 978-3-319-94779-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics