Skip to main content

Reconfiguring Spanning and Induced Subgraphs

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10976))

Included in the following conference series:

Abstract

Subgraph reconfiguration is a family of problems focusing on the reachability of the solution space in which feasible solutions are subgraphs, represented either as sets of vertices or sets of edges, satisfying a prescribed graph structure property. Although there has been previous work that can be categorized as subgraph reconfiguration, most of the related results appear under the name of the property under consideration; for example, independent set, clique, and matching. In this paper, we systematically clarify the complexity status of subgraph reconfiguration with respect to graph structure properties.

This work is partially supported by JST ERATO Grant Number JPMJER1201, JST CREST Grant Number JPMJCR1402, and JSPS KAKENHI Grant Numbers JP16K00004 and JP17K12636, Japan. Research by Canadian authors is supported by the Natural Science and Engineering Research Council of Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonsma, P.: The complexity of rerouting shortest paths. Theor. Comput. Sci. 510, 1–12 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bonsma, P., Cereceda, L.: Finding paths between graph colourings: PSPACE-completeness and superpolynomial distances. Theor. Comput. Sci. 410(50), 5215–5226 (2009)

    Article  MathSciNet  Google Scholar 

  3. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation. Theor. Comput. Sci. 343(1–2), 72–96 (2005)

    Article  MathSciNet  Google Scholar 

  4. van den Heuvel, J.: The complexity of change. In: Surveys in Combinatorics, London Mathematical Society Lecture Note Series, vol. 409, pp. 127–160. Cambridge University Press (2013)

    Google Scholar 

  5. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara, R., Uno, Y.: On the complexity of reconfiguration problems. Theor. Comput. Sci. 412(12–14), 1054–1065 (2011)

    Article  MathSciNet  Google Scholar 

  6. Ito, T., Ono, H., Otachi, Y.: Reconfiguration of cliques in a graph. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 212–223. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17142-5_19

    Chapter  MATH  Google Scholar 

  7. Kamiński, M., Medvedev, P., Milani\({\rm \check{c}}\), M.: Complexity of independent set reconfigurability problems. Theor. Comput. Sci. 439, 9–15 (2012)

    Article  MathSciNet  Google Scholar 

  8. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the parameterized complexity of reconfiguration problems. Algorithmica 78(1), 274–297 (2017)

    Article  MathSciNet  Google Scholar 

  9. Mühlenthaler, M.: Degree-constrained subgraph reconfiguration is in P. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9235, pp. 505–516. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48054-0_42

    Chapter  Google Scholar 

  10. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018)

    Article  Google Scholar 

  11. Wasa, K., Yamanaka, K., Arimura, H.: The complexity of induced tree reconfiguration problems. In: Dediu, A.-H., Janoušek, J., Martín-Vide, C., Truthe, B. (eds.) LATA 2016. LNCS, vol. 9618, pp. 330–342. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30000-9_26

    Chapter  Google Scholar 

  12. Wrochna, M.: Reconfiguration in bounded bandwidth and tree-depth. J. Comput. Syst. Sci. 93, 1–10 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruka Mizuta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hanaka, T. et al. (2018). Reconfiguring Spanning and Induced Subgraphs. In: Wang, L., Zhu, D. (eds) Computing and Combinatorics. COCOON 2018. Lecture Notes in Computer Science(), vol 10976. Springer, Cham. https://doi.org/10.1007/978-3-319-94776-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94776-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94775-4

  • Online ISBN: 978-3-319-94776-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics