Skip to main content

Manipulation Strategies for the Rank-Maximal Matching Problem

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10976))

Included in the following conference series:

Abstract

We consider manipulation strategies for the rank-maximal matching problem. Let \(G=(A \cup P, \mathcal {E})\) be a bipartite graph such that A denotes a set of applicants and P a set of posts. Each applicant \(a \in A\) has a preference list over the set of his neighbours in G, possibly involving ties. A matching M is any subset of edges from \(\mathcal {E}\) such that no two edges of M share an endpoint. A rank-maximal matching is one in which the maximum number of applicants is matched to their rank one posts, subject to this condition, the maximum number of applicants is matched to their rank two posts and so on. A central authority matches applicants to posts in G using one of rank-maximal matchings. Let \(a_1\) be the sole manipulative applicant, who knows the preference lists of all the other applicants and wants to falsify his preference list, so that, he has a chance of getting better posts than if he were truthful, i.e., than if he gave a true preference list.

We give three manipulation strategies for \(a_1\) in this paper. In the first problem ‘best nonfirst’, the manipulative applicant \(a_1\) wants to ensure that he is never matched to any post worse than the most preferred post among those of rank greater than one and obtainable, when he is truthful. In the second strategy ‘min max’ the manipulator wants to construct a preference list for \(a_1\) such that the worst post he can become matched to by the central authority is best possible or in other words, \(a_1\) wants to minimize the maximal rank of a post he can become matched to. To be able to carry out strategy ‘best nonfirst’, \(a_1\) only needs to know the most preferred post of each applicant, whereas putting into effect ‘min max’ requires the knowledge of whole preference lists of all applicants. The last manipulation strategy ‘improve best’ guarantees that \(a_1\) is matched to his most preferred post at least in some rank-maximal matchings.

Partly supported by Polish National Science Center grant UMO-2013/11/B/ST6/01748.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdulkadiroğlu, A., Sönmez, T.: Random serial dictatorship and the core from random endowments in house allocation problems. Econometrica 66(3), 689–701 (1998)

    Article  MathSciNet  Google Scholar 

  2. Abraham, D.J., Cechlárová, K., Manlove, D.F., Mehlhorn, K.: Pareto optimality in house allocation problems. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 1163–1175. Springer, Heidelberg (2005). https://doi.org/10.1007/11602613_115

    Chapter  Google Scholar 

  3. Abraham, D.J., Irving, R.W., Kavitha, T., Mehlhorn, K.: Popular matchings. SIAM J. Comput. 37(4), 1030–1045 (2007)

    Article  MathSciNet  Google Scholar 

  4. Ashlagi, I., Fischer, F.A., Kash, I.A., Procaccia, A.D.: Mix and match: a strategyproof mechanism for multi-hospital kidney exchange. Games Econ. Behav. 91, 284–296 (2015)

    Article  MathSciNet  Google Scholar 

  5. Aziz, H., Brandt, F., Harrenstein, P.: Pareto optimality in coalition formation. Games Econ. Behav. 82, 562–581 (2013)

    Article  MathSciNet  Google Scholar 

  6. Berge, C.: Two theorems in graph theory. Proc. Nat. Acad. Sci. 43(9), 842–844 (1957)

    Article  MathSciNet  Google Scholar 

  7. Dubins, L.E., Freedman, D.A.: Machiavelli and the Gale-Shapley algorithm. Am. Math. Mon. 88(7), 485–494 (1981)

    Article  MathSciNet  Google Scholar 

  8. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 69(1), 9–15 (1962)

    Article  MathSciNet  Google Scholar 

  9. Gale, D., Sotomayor, M.: Ms. Machiavelli and the stable matching problem. Am. Math. Mon. 92(4), 261–268 (1985)

    Article  MathSciNet  Google Scholar 

  10. Ghosal, P., Kunysz, A., Paluch, K.E.: The dynamics of rank-maximal and popular matchings. CoRR, abs/1703.10594 (2017)

    Google Scholar 

  11. Ghosal, P., Nasre, M., Nimbhorkar, P.: Rank-maximal matchings–structure and algorithms. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp. 593–605. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13075-0_47

    Chapter  MATH  Google Scholar 

  12. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algorithms. Foundations of Computing. MIT Press, Cambridge (1989)

    MATH  Google Scholar 

  13. Huang, C.-C.: Cheating by men in the Gale-Shapley stable matching algorithm. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 418–431. Springer, Heidelberg (2006). https://doi.org/10.1007/11841036_39

    Chapter  Google Scholar 

  14. Huang, C.-C.: Cheating to get better roommates in a random stable matching. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 453–464. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70918-3_39

    Chapter  Google Scholar 

  15. Huang, C.-C., Kavitha, T., Mehlhorn, K., Michail, D.: Fair matchings and related problems. Algorithmica 74(3), 1184–1203 (2016)

    Article  MathSciNet  Google Scholar 

  16. Hylland, A., Zeckhauser, R.: The efficient allocation of individuals to positions. J. Polit. Econ. 87(2), 293–314 (1979)

    Article  Google Scholar 

  17. Irving, R.W.: An efficient algorithm for the stable roommates problem. J. Algorithms 6(4), 577–595 (1985)

    Article  MathSciNet  Google Scholar 

  18. Irving, R.W.: Matching medical students to pairs of hospitals: a new variation on a well-known theme. In: Bilardi, G., Italiano, G.F., Pietracaprina, A., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 381–392. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-68530-8_32

    Chapter  Google Scholar 

  19. Irving, R.W.: Greedy matchings. Technical report, University of Glasgow, Tr-2003-136 (2003)

    Google Scholar 

  20. Irving, R.W., Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.E.: Rank-maximal matchings. ACM Trans. Algorithms (TALG) 2(4), 602–610 (2006)

    Article  MathSciNet  Google Scholar 

  21. Kavitha, T., Shah, C.D.: Efficient algorithms for weighted rank-maximal matchings and related problems. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 153–162. Springer, Heidelberg (2006). https://doi.org/10.1007/11940128_17

    Chapter  MATH  Google Scholar 

  22. Krysta, P., Manlove, D., Rastegari, B., Zhang, J.: Size versus truthfulness in the house allocation problem. In: Proceedings of ACM Conference on Economics and Computation, EC, pp. 453–470 (2014)

    Google Scholar 

  23. Nasre, M.: Popular matchings: structure and strategic issues. SIAM J. Discrete Math. 28(3), 1423–1448 (2014)

    Article  MathSciNet  Google Scholar 

  24. Nimbhorkar, P., Rameshwar, V.A.: Dynamic rank-maximal matchings. In: Cao, Y., Chen, J. (eds.) COCOON 2017. LNCS, vol. 10392, pp. 433–444. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62389-4_36

    Chapter  Google Scholar 

  25. Paluch, K.: Capacitated rank-maximal matchings. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 324–335. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38233-8_27

    Chapter  Google Scholar 

  26. Roth, A.E.: The economics of matching: stability and incentives. Math. Oper. Res. 7(4), 617–628 (1982)

    Article  MathSciNet  Google Scholar 

  27. Roth, A.E.: The evolution of the labor market for medical interns and residents: a case study in game theory. J. Polit. Econ. 92(6), 991 (1984)

    Article  Google Scholar 

  28. Roth, A.E., Postlewaite, A.: Weak versus strong domination in a market with indivisible goods. J. Math. Econ. 4(2), 131–137 (1977)

    Article  MathSciNet  Google Scholar 

  29. Roth, A.E., Sönmez, T., Ünver, M.U.: Pairwise kidney exchange. J. Econ. Theor. 125(2), 151–188 (2005)

    Article  MathSciNet  Google Scholar 

  30. Shapley, L., Scarf, H.: On cores and indivisibility. J. Math. Econ. 1(1), 23–37 (1974)

    Article  MathSciNet  Google Scholar 

  31. Teo, C.P., Sethuraman, J., Tan, W.P.: Gale-Shapley stable marriage problem revisited: strategic issues and applications. Manag. Sci. 47(9), 1252–1267 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratik Ghosal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghosal, P., Paluch, K. (2018). Manipulation Strategies for the Rank-Maximal Matching Problem. In: Wang, L., Zhu, D. (eds) Computing and Combinatorics. COCOON 2018. Lecture Notes in Computer Science(), vol 10976. Springer, Cham. https://doi.org/10.1007/978-3-319-94776-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94776-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94775-4

  • Online ISBN: 978-3-319-94776-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics