Skip to main content

Behavior Laws

  • Chapter
  • First Online:
Mathematical Modelling of Physical Systems
  • 728 Accesses

Abstract

Behavior laws of fluid mechanics. Force–velocity relations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See, for instance, [Germ], [D-L19, ch. IA.2.6].

  2. 2.

    This notation anticipates the fact that ϕ, being a strict l.s.c. convex function, is equal to the conjugate function of ϕ.

  3. 3.

    Note that the vector bundle S2TM is naturally equipped with a fibre metric, since M is a Riemannian (even Euclidean) manifold, so that L2(M, S2M) is a Hilbert space.

  4. 4.

    The viscous coefficients can be x-dependent.

  5. 5.

    This operator is similar to the capacity operator (often called Dirichlet-to-Neumann operator) in potential theory (see [D-L19]), or to the Calderón operator (or impedance operator) in electromagnetism (see [Ces]).

  6. 6.

    Beware of confusing the notation uΓ with uΓ(x), x ∈ Γ for the velocities: uΓ is not necessarily tangent to Γ, but is in Tx M = Tx( Γ) ⊕ Tx( Γ). But we keep the notation fΓ for the forces in \(T^{*}_{x}M\). But in some cases, the more natural notation uΓ is used instead of uΓ.

  7. 7.

    For the properties of these spaces, see [Lio-Mag].

  8. 8.

    See (4.9), and [Aub, ch. I.3.5, p. 46].

  9. 9.

    See [Eke-Tem, ch. VII.4], [Aub, ch. 1.5.2; 5.3].

Bibliography

  1. Aubin, J.P.: Optima and Equilibria. Graduate Texts in Mathematics, vol. 140. Springer, Berlin (1993)

    Book  Google Scholar 

  2. Bouchitté, G., Suquet, P.: Equicoercivity of variational problems: the role of recession functions. In: Brezis, H., Lions, J.L. (eds.) Non Linear Partial Differential Equations and Their Applications. Collège de France, Seminar, vol. XII. Pitman 302 (1994)

    Google Scholar 

  3. Cessenat, M.: Mathematical Methods in Electromagnetism. Linear Theory and Applications. Series on Advances in Mathematics for Applied Sciences, vol. 41. World Scientific, River Edge (1996)

    Google Scholar 

  4. Ciarlet, P.G.: Introduction à l’analyse numérique matricielle et à l’optimisation. Masson, Paris (1985)

    MATH  Google Scholar 

  5. Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Method for Science and Technology. Springer, Berlin (1999). Translation of the following

    Google Scholar 

  6. Duvaut, G., Lions, J.L.: Les inéquations en mécanique et en physique. Dunod, Paris (1972)

    MATH  Google Scholar 

  7. Ekeland, I., Temam, R.: Analyse convexe et problèmes variationnels. Dunod, Paris (1974)

    MATH  Google Scholar 

  8. Germain, P.: Cours de mécanique des milieux continus. Masson, Paris (1973)

    MATH  Google Scholar 

  9. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier–Stokes Equations. Lecture Notes in Mathematics, vol. 749. Springer, Berlin (1981)

    Google Scholar 

  10. Landau, L., Lifchitz, E.: Mécanique des fluides. Mir, Moscow (1967)

    Google Scholar 

  11. Lions, J.L., Magenes, E.: Problèmes aux limites non homogènes et applications. vols. 1, 2. Dunod, Paris (1968)

    Google Scholar 

  12. Moreau, J.J.: Sur les lois de frottement, de plasticité et de viscosité. Note C.R.A.S. Série A, t. 271 (1970)

    Google Scholar 

  13. Pironneau, O.: Méthodes des éléments finis pour les fluides. R.M.A.7 Masson (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cessenat, M. (2018). Behavior Laws. In: Mathematical Modelling of Physical Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-94758-7_4

Download citation

Publish with us

Policies and ethics