Skip to main content

Fluid Mechanics Modelling

  • Chapter
  • First Online:
Mathematical Modelling of Physical Systems
  • 744 Accesses

Abstract

Modelling fluid mechanics generally begins with defining a fixed framework with a fixed domain M of the fluid, a space of diffeomorphisms of M, so that the time intervenes as an exterior parameter as a last resort. When the domain of the fluid is time-dependent, we must change the strategy. The time must be taken into account in the framework from the beginning, and we have to use the basic notions of Euler and Lagrange variables. The point of view is in part different from that of Chapter 1, but there will be some repetitions, and the notation does not always agree with the previous notation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Or also a pseudogroup; see [Mall, ch. II.2.4]).

  2. 2.

    If the domain M is time-independent, then \(\tilde {M}\) is identified with M × R. Notice that \(\tilde {M}\) may be unknown, giving a free boundary problem. In usual models, the closure of the domain Ms occupied at time s by the fluid is the support of the volume mass ρ(s).

  3. 3.

    With L(M0) trivial, which is identified with the product M0 × Gl(3), the connection form ω0 is the pullback of the Maurer–Cartan form θMC on Gl(3) by the projection p defined by p(x, g) = g ∈ Gl(3), ω0 = p θMC. This implies that the torsion and the curvature are null; see, for instance, [Kob-Nom, ch. II.9, p. 92].

  4. 4.

    We assume that if σ0 is the section of \(L(\tilde {M})\) such that \(\sigma _{0}(x)=(X_{j})=(\frac {\partial }{\partial x^{j}})_{j=1,2,3,4}\), with \(\frac {\partial }{\partial x^{4}}=\frac {\partial }{\partial t}\), then the differential form \(\sigma _{0}^{*}\omega \) on \(\tilde {M}\) is null.

  5. 5.

    It may be viewed as a reduced bundle of \(L(\tilde {M})\) over \(\tilde {M}\); see [Kob-Nom, Vol. 2, ch. VII.8, p. 53].

  6. 6.

    We recall that we have \(h(\tilde {u}\tilde {a})=ua=h(\tilde {u})h_{0}(\tilde {a})\), with h0 the projection from gl(3 + 1, 3) onto gl(3).

  7. 7.

    The space Lx M is identified with the space of linear bijective mappings from R3 onto Tx M (denoted by Isom (R3, Tx M)), by associating to each frame u = (e1, e2, e3) of Tx M the isomorphism \(\lambda =(\lambda _{1},\lambda _{2},\lambda _{3})\in R^{n}\rightarrow u(\lambda )=\sum \lambda _{i}e_{i} \in T_{x}M\).

  8. 8.

    Here the displacement group is R3 × O(3) instead of R3 × SO(3) in Chapter 2.

  9. 9.

    With the notation 𝜖i,j we refer to the components of the tensor \(\epsilon \in T_{2}^{0}(M)\), whereas \(\epsilon _{i}^{j}\) refers to a tensor in \(T_{1}^{1}(M)\), giving, by taking the product with dxi ⊗ dxj and contraction, the tensor 𝜖.

  10. 10.

    This is allowed by the fact that (G Av)a(fY ) = f(G Av)a(Y ) for every function f.

  11. 11.

    See, for instance, [Bour.alg0, ch. AIII]

  12. 12.

    See [Kob-Nom, ch. VI.2, Prop. 2.5].

  13. 13.

    See [Kob-Nom, Vol. 2, ch. VII.3, p. 15].

  14. 14.

    See [Kob-Nom, Vol. 2, ch. VII.3].

  15. 15.

    See [Kob-Nom, Appendix 6].

  16. 16.

    See, for instance, [Bour.var, 9.1.4].

  17. 17.

    See [Ziem, ch. 3.10, Thm. 3.10.4, Thm. 3.10.5, Thm. 3.11.6] or [Eva-Gar].

  18. 18.

    This is the space of p-integrable functions with their derivatives up to the order 1.

  19. 19.

    Note that we have to consider separately the incompressible fluid case depending on the Navier–Stokes equation, where the trajectories are independent of the pressure, but thermodynamics is not really present in this model.

  20. 20.

    The physical existence of such a field seems natural from a finer modelling, microscopic or (and) random, with a diffusion process, for instance.

  21. 21.

    The internal energy \(\hat {e}\) is identified with (the pullback of) the thermodynamic internal energy e by the section ξF.

  22. 22.

    Which may be a model of a Joule effect induced by an electromagnetic field.

  23. 23.

    In a similar way to the Clausius–Duhem form; see [D-L19, chap. 1]).

  24. 24.

    Beware of the simple notation v2; we recall that this means g(v, v), with g the pullback of the initial metric by the inverse flow.

  25. 25.

    Its intrinsic character is given in (3.69).

  26. 26.

    See Chapter 4 for this notation.

  27. 27.

    With the time-dependent notation on v and ρ.

  28. 28.

    At least for a Newtonian fluid and if the velocity is null on the boundary of M (that is, the Dirichlet condition).

  29. 29.

    Of course, the use of the van der Waals equation may be criticized, but the same result will be obtained with any reasonable state equation.

  30. 30.

    Their frameworks may be specified thanks to the trace theorems.

  31. 31.

    For instance with the state equation P = γρe.

  32. 32.

    In order to simplify; without this hypothesis, we would have vΓ ∈ L2(J, H1∕2( Γ)), and similar results.

  33. 33.

    Especially in stochastic theory (see, for instance, [Par]).

  34. 34.

    We could also consider a domain Ω in Rd, bounded or not.

  35. 35.

    Note that this is possible notably with u ∈ BV (Rd)N the space of bounded variations.

  36. 36.

    Note that this condition implies that the surface Σ is orientable.

  37. 37.

    Note that sometimes we assume that φ(x, t) = 0 is of the form ψ(x) + t = 0, which implies that Σt ∩ Σs is empty if t ≠ s.

  38. 38.

    We use the formula grad P = (grad P) − [P]Σ, with grad P taken in the sense of distributions, (grad P) in the classical sense, and n the unit normal to Σ.

Bibliography

  1. Arnold, V.I., Khesin, B.A.: Topological Methods in Hydrodynamics. Applied Mathematical Sciences, vol. 125. Springer, Berlin (1998)

    Google Scholar 

  2. Bourbaki, N.: Algèbre, Chap. 1 à 3. Eléments de mathématique. Hermann, Paris (1970)

    Google Scholar 

  3. Bourbaki, N.: Intégration, Chap. I à IX. Eléments de mathématique. Hermann, Paris (1965)

    Google Scholar 

  4. Bourbaki, N.: Variétés différentielles et analytiques. Fascicule de résultats. Hermann, Paris (1971)

    Google Scholar 

  5. Cessenat, M.: Mathematical Methods in Electromagnetism. Linear Theory and Applications. Series on Advances in Mathematics for Applied Sciences, vol. 41. World Scientific, River Edge (1996)

    Google Scholar 

  6. Chéret, R.: La détonation des explosifs condensés. Collection CEA, tomes 1, 2. Masson, Paris (1989)

    Google Scholar 

  7. Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Method for Science and Technology. Springer, Berlin (1999). Translation of the following

    Google Scholar 

  8. Dautray, R., Lions, J.L.: Analyse mathématique et calcul numérique pour les sciences et les techniques. Masson, Paris (1984). Vol. 1 Chap I.6, et Vol. 2 Chap IX B

    Google Scholar 

  9. de Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. Dover, New York (1984)

    MATH  Google Scholar 

  10. Desjardins, B.: Quelques Problèmes Mathématiques de la Mécanique des fluides. Habilitation à diriger des recherches. Ceremade Université Paris IX Dauphine (1999)

    Google Scholar 

  11. Dieudonné, J.: Eléments d’analyse, Tomes 3 et 4. Gauthier-Villars, Paris (1971)

    Google Scholar 

  12. Di Perna, R.J., Lions, P.L.: Ordinary differential equations, Sobolev spaces, and transport theory. Invent. Math. 98, 511–547 (1989)

    Article  MathSciNet  Google Scholar 

  13. Di Perna, R.J., Lions, P.L.: Equations différentielles ordinaires et équations de transport avec des coefficients irréguliers. In: Séminaire EDP 1988-1989. Ecole Polytechnique, Palaiseau (1989)

    Google Scholar 

  14. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  15. Germain, P.: Cours de mécanique des milieux continus. Masson, Paris (1973)

    MATH  Google Scholar 

  16. Godlewski, E., Raviart, P.A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Applied Mathematical Sciences, vol. 118. Springer, New York (1996)

    Book  Google Scholar 

  17. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Vols. I and II. Tracts in Mathematics Number 15. Wiley-Interscience, New York (1963)

    Google Scholar 

  18. Landau, L., Lifchitz, E.: Physique statistique. Mir, Moscow (1967)

    Google Scholar 

  19. Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux limites non linéaires. Dunod, Paris (1968)

    MATH  Google Scholar 

  20. Malliavin, P.: Géométrie différentielle intrinsèque. Hermann, Paris (1972)

    MATH  Google Scholar 

  21. Pardoux, E., Cessenat, M., Dautray, R., Ledanois, G., Lions, P.L., Sentis, R.: Méthodes probabilistes pour les équations de la physique. Collection CEA, Eyrolles (1989)

    Google Scholar 

  22. Pironneau, O.: Méthodes des éléments finis pour les fluides. R.M.A.7 Masson (1988)

    Google Scholar 

  23. Prigogine, I., Kondepudi, D.: Thermodynamique. Odile Jacob (1999)

    Google Scholar 

  24. Ziemer, W.P.: Weakly Differentiable Functions. Springer, New York (1989)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cessenat, M. (2018). Fluid Mechanics Modelling. In: Mathematical Modelling of Physical Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-94758-7_3

Download citation

Publish with us

Policies and ethics