Skip to main content

Genomic-Assisted Enhancement in Stress Tolerance for Productivity Improvement in Sorghum

  • Chapter
  • First Online:
Biotechnologies of Crop Improvement, Volume 3

Abstract

Sorghum [Sorghum bicolor (L.) Moench], the fifth most important cereal crop in the world after wheat, rice, maize, and barley, is a multipurpose crop widely grown for food, feed, fodder, forage, and fuel, vital to the food security of many of the world’s poorest people living in fragile agroecological zones. Globally, sorghum is grown on ~42 million hectares area in ~100 countries of Africa, Asia, Oceania, and the Americas. Sorghum grain is used mostly as food (~55%), in the form of flat breads and porridges in Asia and Africa, and as feed (~33%) in the Americas. Stover of sorghum is an increasingly important source of dry season fodder for livestock, especially in South Asia. In India, area under sorghum cultivation has been drastically come down to less than one third in the last six decades but with a limited reduction in total production suggesting the high-yield potential of this crop. Sorghum productivity is far lower compared to its genetic potential owing to a limited exploitation of genetic and genomic resources developed in the recent past. Sorghum production is challenged by various abiotic and biotic stresses leading to a significant reduction in yield. Advances in modern genetics and genomics resources and tools could potentially help to further strengthen sorghum production by accelerating the rate of genetic gains and expediting the breeding cycle to develop cultivars with enhanced yield stability under stress. This chapter reviews the advances made in generating the genetic and genomics resources in sorghum and their interventions in improving the yield stability under abiotic and biotic stresses to improve the productivity of this climate-smart cereal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anami SE, Zhang LM, Xia Y, Zhang YM, Liu ZQ, Jing HC (2015) Sweet sorghum ideotypes: genetic improvement of stress tolerance. Food and Energy Security 4(1):3–24

    Article  Google Scholar 

  • Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89(7):925–940

    Article  PubMed  PubMed Central  Google Scholar 

  • Aruna C, Bhagwat VR, Sharma V, Hussain T, Ghorade RB, Khandalkar HG, Audilakshmi S, Seetharama N (2011) Identification and validation of genomic regions that affect shoot fly resistance in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 122:1617–1630

    Article  PubMed  CAS  Google Scholar 

  • Awika JM, Rooney LW (2004) Sorghum phytochemicals and their potential impact on human health. Phytochemistry 65(9):1199–1221

    Article  PubMed  CAS  Google Scholar 

  • Bergquist RR (1973) Colletotrichum graminicola on Sorghum bicolor in Hawaii. Plant Dis Rep 57(3):272–275

    Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48(5):1649–1664

    Article  Google Scholar 

  • Billot C, Ramu P, Bouchet S, Chantereau J, Deu M, Gardes L, Noyer JL, Rami JF, Rivallan R, Li Y, Lu P (2013 Apr 2) Massive sorghum collection genotyped with SSR markers to enhance use of global genetic resources. PLoS One 8(4):e59714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blum A, Ebercon A (1976) Genotypic responses in Sorghum to drought stress. III. Free Proline accumulation and drought resistance 1. Crop Sci 16(3):428–431

    Article  CAS  Google Scholar 

  • Blummel M, Deshpande SP, Kholova J, Vadez V (2015) Introgression of staygreen QLT’s for concomitant improvement of food and fodder traits in Sorghum bicolor. Field Crop Res:180

    Google Scholar 

  • Borphukan B (2017) Evaluation of minicore germplasm of rabi sorghum for charcoal rot resistance and yield component traits, expression analysis of selected r-genes during charcoal rot disease incidence (Doctoral dissertation, UASD).

    Google Scholar 

  • Borrell AK, Mullet JE, George-Jaeggli B, Van Oosterom EJ, Hammer GL, Klein PE, Jordan DR (2014) Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. J Exp Bot 65:6251–6263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bouchet S, Olatoye MO, Marla SR, Perumal R, Tesso T, Yu J, Tuinstra M, Morris GP (2017 Jun 1) Increased power to dissect adaptive traits in global sorghum diversity using a nested association mapping population. Genetics 206(2):573–585

    Article  PubMed  PubMed Central  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchnnan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1249

    Google Scholar 

  • Burrell AM, Sharma A, Patil NY, Collins SD, Anderson WF, Rooney WL, Klein PE (2015) Sequencing of an anthracnose-resistant sorghum genotype and mapping of a major QTL reveal strong candidate genes for anthracnose resistance. Crop Sci 55(2):790–799

    Article  Google Scholar 

  • Chowdhury SI, Wardlaw IF (1978) The effect of temperature on kernel development in cereals. Aust J Agric Res 29(2):205–223

    Article  Google Scholar 

  • Crasta OR, Xu WW, Rosenow DT, Mullet J, Nguyen HT (1999) Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol Gen Genet 262(3):579–588

    Article  PubMed  CAS  Google Scholar 

  • Cuevas HE, Prom LK, Erpelding JE (2014) Inheritance and molecular mapping of anthracnose resistance genes present in sorghum line SC112-14. Mol Breed 34(4):1943–1953

    Article  CAS  Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3(2):117–124

    Article  PubMed  CAS  Google Scholar 

  • Deshpande S, Rakshit S, Manasa KG, Pandey S, Gupta R (2016) Genomic Approaches for Abiotic Stress Tolerance in Sorghum. In: The Sorghum Genome 2016. Springer, Cham, pp 169–187

    Chapter  Google Scholar 

  • Dicko MH, Gruppen H, Traoré AS, van Berkel WJ, Voragen AG (2005) Evaluation of the effect of germination on phenolic compounds and antioxidant activities in sorghum varieties. J Agric Food Chem 53(7):2581–2588

    Article  PubMed  CAS  Google Scholar 

  • Dicko MH, Gruppen H, Traoré AS, Voragen AG, Van Berkel WJ (2006) Sorghum grain as human food in Africa: relevance of content of starch and amylase activities. Afr J Biotechnol 5(5):384–395

    CAS  Google Scholar 

  • Dhillon MK, Sharma HC, Pampapathy G, Reddy BVS (2006) Cytoplasmic male sterility affects expression of resistance to shoot bug (Peregrinus maidis), sugarcane aphid (Melanaphis sacchari) and spotted stem borer (Chilo partellus) in sorghum. ejournal.icrisat.org 2(1)

    Google Scholar 

  • Downes RW (1972) Effect of temperature on the phenology and grain yield of Sorghum bicolor. Aust J Agric Res 23(4):585–594

    Article  Google Scholar 

  • Erpelding JE (2010) Field assessment of anthracnose disease response for the Sorghum Germplasm collection from the Mopti region. Am J Agric Biol Sci 5(3):363–369

    Article  Google Scholar 

  • FAO (2013). http://www.fao.org/docrep/018/i3107e/i3107e.PDF

  • FAOSTAT (2016). http://www.fao.org/faostat

  • Folkertsma RT, Sajjanar GM, Reddy BV, Sharma HC, Hash CT (2003) Genetic mapping of QTL associated with sorghum shoot fly (Atherigona soccata) resistance in sorghum (Sorghum bicolor). Final abstracts guide, plant & animal genome XI

    Google Scholar 

  • Frederiksen RA (1984) Anthracnose stalk rot. Sorghum root and stalk rots, a critical review, 37–40

    Google Scholar 

  • Gelli M, Duo Y, Konda AR, Zhang C, Holding D, Dweikat I (2014) Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling. BMC Genomics 15(1):179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gelli M, Mitchell SE, Liu K, Clemente TE, Weeks DP, Zhang C, Holding DR, Dweikat IM (2016) Mapping QTLs and association of differentially expressed gene transcripts for multiple agronomic traits under different nitrogen levels in sorghum. BMC Plant Biol 16(1):16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Habyarimana E, Lorenzoni C, Busconi M (2010) Search for new stay-green sources in Sorghum bicolor (L.) Moench. Maydica 55(3):187

    Google Scholar 

  • Harris K, Subudhi PK, Borrell A, Jordan D, Rosenow D, Nguyen H, Klein P, Klein R, Mullet J (2007) Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J Exp Bot 58:327–338

    Article  PubMed  CAS  Google Scholar 

  • Haussmann B, Mahalakshmi V, Reddy B, Seetharama N, Hash C, Geiger H (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106(1):133–142

    Article  PubMed  CAS  Google Scholar 

  • Heald FD, Wolf FA (1912) A plant-disease survey in the vicinity of San Antonio, Texas. Govt. Print, Off

    Book  Google Scholar 

  • Hess DE, Bandyopadhyay R, Sissoko I (2002) Pattern analysis of sorghum genotype× environment interaction for leaf, panicle, and grain anthracnose in Mali. Plant Dis 86(12):1374–1382

    Article  Google Scholar 

  • Hsi DC (1956) Stalk rots of sorghum in eastern New Mexico. Plant Disease Reporter. 40:369–371

    Google Scholar 

  • ICRISAT (2018) Sorghum. Available at: http://exploreit.icrisat.org/profile/Sorghum/193

  • Jabereldar AA, El Naim AM, Abdalla AA, Dagash YM (2017) Effect of water stress on yield and water use efficiency of Sorghum (Sorghum bicolor L. Moench) in semi-arid environment. Int J Agric For 7(1):1–6

    Google Scholar 

  • Jordan WR, Sullivan CY (1981) Reaction and resistance of grain sorghum to heat and drought. In: Sorghum in the eighties: proceedings of the international symposium on Sorghum, 2–7

    Google Scholar 

  • Jordan DR, Mace ES, Cruickshank AW, Hunt CH, Henzell RG (2011) Exploring and exploiting genetic variation from unadapted sorghum germplasm in a breeding program. Crop Sci 51(4):1444–1457

    Article  Google Scholar 

  • Jordan DR, Hunt CH, Cruickshank AW, Borrell AK, Henzell RG (2012) The relationship between the stay-green trait and grain yield in elite sorghum hybrids grown in a range of environments. Crop Sci 52(3):1153–1161

    Article  Google Scholar 

  • Jotwani MG (1978) Investigations on insect pests of sorghum and millets with special reference to host plant resistance. Final Technical Report (1972–1977). Research Bulletin of the Division of Entomology, Indian Agricultural Research Institute, New Delhi, India, p. 114

    Google Scholar 

  • Kapanigowda MH, Payne WA, Rooney WL, Mullet JE, Balota M (2014) Quantitative trait locus mapping of the transpiration ratio related to pre-flowering drought tolerance in sorghum (Sorghum bicolor). Funct Plant Biol 41(11):1049–1065

    Article  CAS  Google Scholar 

  • Karaya H, Njoroge K, Mugo S, Nderitu H (2009) Combining ability among Twenty Insect resistant maize inbred lines resistant to Chilo partellus and Busseola fusca stem borers. International Journal of Plant Production 3(1)

    Google Scholar 

  • Kebede H, Subudhi PK, Rosenow DT, Nguyen HT (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 103(2–3):266–276

    Article  CAS  Google Scholar 

  • Khan ZR, Hassanali A, Pickett JA, Wadhams LJ, Muyekho F (2003) Strategies for control of cereal stem borers and Striga weed in maize-based farming Systems in Eastern Africa involving ‘push-Pull’andallelopathic tactics, respectively. In: African crop science conference proceedings, vol 6. pp. 602–608

    Google Scholar 

  • Kiniry JR, Musser RL (1988) Response of kernel weight of sorghum to environment early and late in grain filling. Agron J 80(4):606–610

    Article  Google Scholar 

  • Klein RR, Rodriguez-Herrera R, Schlueter JA, Klein PE, Yu ZH, Rooney WL (2001) Identification of genomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum. Theor Appl Genet 102(2–3):307–319

    Article  CAS  Google Scholar 

  • Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  PubMed  CAS  Google Scholar 

  • Krakowsky MD, Lee M, Woodman-Clikeman WL, Long MJ, Sharopova N (2004) QTL mapping of resistance to stalk tunneling by the European corn borer in RILs of maize population B73× De8 1. Crop Sci 44(1):274–282

    CAS  Google Scholar 

  • Kumar S, Kaur R, Kaur N, Bhandhari K, Kaushal N, Gupta K, Bains TS, Nayyar H (2011) Heat-stress induced inhibition in growth and chlorosis in mung bean (Phaseolus aureus Roxb.) is partly mitigated by ascorbic acid application and is related to reduction in oxidative stress. Acta Physiol Plant 33(6):2091

    Article  CAS  Google Scholar 

  • Kumar A, Kumar S, Dahiya K, Kumar S, Kumar M (2015) Productivity and economics of direct seeded rice (Oryza sativa L.). J Appl Nat Sci 7:410–416

    Article  Google Scholar 

  • Li Y, Hill CB, Carlson SR, Diers BW, Hartman GL (2007) Soybean aphid resistance genes in the soybean cultivars Dowling and Jackson map to linkage group M. Mol Breed 19(1):25–34

    Article  CAS  Google Scholar 

  • Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160(4):1686–1697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mace ES, Jordan DR (2010) location of major effect genes in sorghum (Sorghum bicolor (L.) Monech). Theor Appl Genet 121:1339–1356

    Article  PubMed  CAS  Google Scholar 

  • Mace ES, Jordan DR (2011) Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of rich regions with significant implications for crop improvement. Theor Appl Genet. https://doi.org/10.1007/s00122-011-1575y

  • Mace ES, Rami JF, Bouchet S, Klein PE, Klein RR, Killian A, Wenzi P, Xia L, Halloran K, Jordan DR (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol 9:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ, Bian L, Campbell BC, Hu W, Innes DJ, Han X, Cruickshank A (2013) Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun 4:2320

    Article  PubMed  PubMed Central  Google Scholar 

  • Magalhaes JV, Garvin DF, Wang Y, Sorrells ME, Klein PE, Schaffert RE, Li L, Kochian LV (2004) Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the Poaceae. Genetics 167(4):1905–1914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Magalhaes JV, Liu J, Guimaraes CT, Lana UG, Alves VM, Wang YH, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE, Klein PE (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39(9):1156

    Article  PubMed  CAS  Google Scholar 

  • Mailafiya DM, Le Ru BP, Kairu EW, Calatayud PA, Dupas S (2009) Species diversity of lepidopteran stem borer parasitoids in cultivated and natural habitats in Kenya. J Appl Entomol 133(6):416–429

    Article  Google Scholar 

  • Maiti RK (1996) Sorghum science. Science Publishers, Lebanon

    Google Scholar 

  • Maranville JW, Clark RB, Ross WM (1980) Nitrogen efficiency in grain sorghum. J Plant Nutr 2(5):577–589

    Article  CAS  Google Scholar 

  • Marschner H (1991) Mechanisms of adaptation of plants to acid soils. Plant Soil 134(1):1–20

    Article  CAS  Google Scholar 

  • Miller PR (1956) Plant disease situation in the United States. FAO Plant Production Bull 4:152–156

    Google Scholar 

  • Mohan SM, Madhusudhana R, Mathur K, Chakravarthi DV, Rathore S, Reddy RN, Satish K, Srinivas G, Mani NS, Seetharama N (2010) Identification of quantitative trait loci associated with resistance to foliar diseases in sorghum [Sorghum bicolor (L.) Moench]. Euphytica 176(2):199–211

    Article  CAS  Google Scholar 

  • Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc. Natl. Acad. Sci. USA 110:453–458

    Article  PubMed  Google Scholar 

  • Mutava RN, Prasad PV, Tuinstra MR, Kofoid KD, Yu J (2011) Characterization of sorghum genotypes for traits related to drought tolerance. Field Crop Res 123(1):10–18

    Article  Google Scholar 

  • Nedumaran S, Abinaya P, Bantilan MC (2013) Sorghum and millets futures in Asia under changing socio-economic and climate scenarios, Socioeconomics Discussion Paper Series Number 2

    Google Scholar 

  • Nguyen CT (2014) The physiology and genetic of high temperature effects on growth and development of sorghum. PhD Thesis, School of Agriculture and Food Sciences, The University of Queensland. https://doi.org/10.14264/uql.2015.317

  • Nwanze KF (1997) Integrated management of stem borers of sorghum and pearl millet. Inter J Trop Insect Sci 17(1):1–8

    Article  Google Scholar 

  • Ozsolak F, Milos MM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12:87–98

    Article  PubMed  CAS  Google Scholar 

  • Patil N, Klein R, Williams LC, Collins SE, Knoll J, Burrell M, Anderson FW, Rooney W, Klein P (2017) Quantitative trait loci associated with anthracnose resistance in Sorghum. Crop Sci 57

    Google Scholar 

  • Pastor-Corrales MA, Frederiksen RA (1980) Sorghum anthracnose. In: Sorghum Diseases a world Review, Proceedings of the International Workshop on Sorghum Diseases, ICRISAT, Hyderabad, India, 289–294, December 1978

    Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457(7229):551

    Article  PubMed  CAS  Google Scholar 

  • Perumal R, Menz MA, Mehta PJ, Katilé S, Gutierrez-Rojas LA, Klein RR (2009) Molecular mapping of Cg1, a gene for resistance to anthracnose (Colletotrichum sublineolum) in sorghum. Euphytica 165:597–606. https://doi.org/10.1007/s10681-008-9791-5

    Article  CAS  Google Scholar 

  • Phuong N, Stützel H, Uptmoor R (2013) Quantitative trait loci associated to agronomic traits and yield components in a Sorghum bicolor L. Moench RIL population cultivated under pre-flowering drought and well-watered conditions. Agric Sci 4 (2013) 4(12):781–791

    Google Scholar 

  • Porter RH (1926) A preliminary report of surveys for plant diseases in East China. Plant Dis Rep 46(Suppl):153–166

    Google Scholar 

  • Pradhan S (1971) Investigations on insect pests of sorghum and millets (1965-70). Final Technical Report. PL 480 project grant no. FG. In-227, Project No. A7-ENT-31, Division of Entomology IARI, New Delhi

    Google Scholar 

  • Prasad PV, Boote KJ, Allen LH Jr (2006) Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agric For Meteorol 139(3–4):237–251

    Article  Google Scholar 

  • Prasad PV, Pisipati SR, Mutava RN, Tuinstra MR (2008) Sensitivity of grain sorghum to high temperature stress during reproductive development. Crop Sci 48(5):1911–1917

    Article  Google Scholar 

  • Prasad GS, Babu KS, Subbarayudu B, Bhagwat VR, Patil JV (2015) Identification of sweet Sorghum accessions possessing multiple resistance to shoot fly (Atherigona soccata Rondani) and spotted stem borer (Chilo partellus Swinhoe). Sugar Tech 17(2):173–180

    Article  CAS  Google Scholar 

  • Rai S, Jotwani MG, Jha D (1978) Economic injury level of shoot fly, Atherigona soccata (Rondani) on sorghum. Indian J Entomol 40(2):126–133

    Google Scholar 

  • Rakshit S, Swapna M, Dalal M, Sushma G, Ganapathy KN, Dhandapani A, Karthikeyan M, Talwar HS (2016) Post-flowering drought stress response of post-rainy sorghum genotypes. Indian J Plant Physiol 21(1):8–14

    Article  CAS  Google Scholar 

  • Ramu P, Deshpande SP, Senthilvel S, Jayashree B, Billot C, Deu M, Reddy LA, Hash CT (2010) In silico mapping of important genes and markers available in the public domain for efficient sorghum breeding. Mol Breed 26(3):409–418

    Article  Google Scholar 

  • Reddy PS, Fakrudin B, Punnuri SM, Arun SS, Kuruvinashetti MS, Das IK, Seetharama N (2008) Molecular mapping of genomic regions harboring QTLs for stalk rot resistance in sorghum. Euphytica 159(1-2):191–198

    Article  CAS  Google Scholar 

  • Reddy BVS, Kumar AA, Sharma HC, Rao SP, Blummel M, Reddy C, Sharma R, Deshpande SP, Mazumdar SD, Dinakaran E (2012) Sorghum improvement (1980–2010): status and way forward. J Semi-Arid Tropics (SAT) Agric Res 10:1–14

    Google Scholar 

  • Reddy NRR, Ragimasalawada M, Sabbavarapu MM, Nadoor S, Patil JV (2014) Detection and validation of stay-green QTL in post-rainy sorghum involving widely adapted cultivar, M35-1 and a popular stay-green genotype B35. BMC Genomics 15:909

    Google Scholar 

  • Rezende VF, Vencovsky R, Cárdenas FE, da Silva HP, Bearzoti E, Camargo LE (2004) Mixed inheritance model for resistance to anthracnose leaf blight in maize. Crop Breed Appl Biotechnol 4(1):115–122

    Article  Google Scholar 

  • Riyazaddin M, Kishor K, Polavarapu B, Ashok Kumar A, Reddy BV, Munghate RS, Sharma HC (2015) Mechanisms and diversity of resistance to sorghum shoot fly, Atherigona soccata. Plant Breed 134(4):423–436

    Article  Google Scholar 

  • Rooney LW (2007) Food and nutritional quality of sorghum and millet. INTSORMIL, Nebraska

    Google Scholar 

  • Sabadin PK, Malosetti M, Boer MP, Tardin FD, Santos FG, Guimaraes CT, Gomide RL, Andrade CLT, Albuquerque PEP, Caniato FF, Mollinari M (2012) Studying the genetic basis of drought tolerance in sorghum by managed stress trials and adjustments for phenological and plant height differences. Theor Appl Genet 124(8):1389–1402

    Article  PubMed  CAS  Google Scholar 

  • Sajjanar GM (2002) Genetic analysis and molecular mapping of components of resistance to shoot fly (Atherigona soccata) in sorghum (Sorghum bicolor (L.) Moench). Ph.D. thesis, University of Agricultural Sciences, Dharwad, India

    Google Scholar 

  • Sally LD, Frances MS, Robert JH, Giovanni C, Liz I (2007) Domestication to crop improvement: genetic resources for Sorghum and Saccharum (Andropogoneae). Ann Bot 100(5):975–989

    Article  Google Scholar 

  • Sanchez AC, Subudhi PK, Rosenow DT, Nguyen HT (2002) Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Mol Biol 48(5–6):713–726

    Article  PubMed  CAS  Google Scholar 

  • Satish K, Srinivas G, Madhusudhana R, Padmaja PG, Reddy RN, Mohan SM, Seetharama N (2009) Identification of quantitative trait loci for resistance to shoot fly in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 119(8):1425–1439

    Article  PubMed  CAS  Google Scholar 

  • Sharma HC (1985) Strategies for pest control in sorghum in India. International Journal of Pest Management 31(3):167–185

    Google Scholar 

  • Sharma HC (1993) Host-plant resistance to insects in sorghum and its role in integrated pest management. Crop Prot 12(1):11–34

    Article  Google Scholar 

  • Sharma HC, Leuschner K, Nwanze KF, Taneja SL (1992) Techniques to screen sorghums for resistance to insect pests. International Crops Research Institute for the Semi-Arid Tropics

    Google Scholar 

  • Sharma HC, Taneja SL, Rao NK, Rao KP (2003) Evaluation of sorghum germplasm for resistance to insect pests. International Crops Research Institute for the Semi-Arid Tropics

    Google Scholar 

  • Sharma HC, Reddy BV, Dhillon MK, Venkateswaran K, Singh BU, Pampapathy G, Folkertsma RT, Hash CT, Sharma KK (2005) Host plant resistance to insects in sorghum: present status and need for future research. Int Sorghum Millets Newsl 46:36–43

    Google Scholar 

  • Sharma HC (2006) Integrated pest management research at ICRISAT: present status and future priorities. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India 48

    Google Scholar 

  • Sharma HC, Dhillon MK, Pampapathy G, Reddy BVS (2007) Inheritance of resistance to spotted stem borer, Chilo partellus, in sorghum, Sorghum bicolor. Euphytica 156:117–128

    Article  Google Scholar 

  • Singh SD, Bandyopadhyay R (2000) Grain mold. In: Odvody GN (ed) Compendium of Sorghum diseases, 2nd edn. The American Phytopathological Society, APS Press, Frederiksen/St. Paul, pp 38–40

    Google Scholar 

  • Singh SR, Vedamoorthy G, Thobbi VV, Jotwani MG, Young WR, Balan JS, Srivastava KP, Sandhu GS, Krishnananda N (1968) Resistance to stem borer, Chilozonellus (Swinhoe) and stem fly, Atherigona varia soccata Rond. In the world sorghum collection in India. Mem ent Soc India 7:1–79

    Google Scholar 

  • Singh M, Chaudhary K, Singal HR, Magill CW, Boora KS (2006) Identification and characterization of RAPD and SCAR markers linked to anthracnose resistance gene in sorghum [Sorghum bicolor (L.) Moench]. Euphytica 149(1–2):179–187

    Article  CAS  Google Scholar 

  • Singh BU, Rao KV, Sharma HC (2011) Comparison of selection indices to identify sorghum genotypes resistant to the spotted stem borer Chilo partellus (Lepidoptera: Noctuidae). Int J Trop Insect Sci 31(1–2):38–51

    Article  Google Scholar 

  • Skelton JL (2014) EMS induced mutations in dhurrin metabolism and their impacts on sorghum growth and development. Doctoral dissertation, Purdue University

    Google Scholar 

  • Srinivas G, Satish K, Madhusudhana R, Seetharama N (2009) Exploration and mapping of microsatellite markers from subtracted drought stress ESTs in Sorghum bicolor (L.) Moench. Theor Appl Genet 118(4):703–717

    Article  PubMed  CAS  Google Scholar 

  • Subudhi PK, Rosenow DT, Nguyen HT (2000) Quantitative trait loci for the stay green trait in sorghum (Sorghum bicolor L. Moench): consistency across genetic backgrounds and environments. Theor Appl Genet 101(5–6):733–741

    Article  CAS  Google Scholar 

  • Sullivan CY, Blum A (1970) Drought and Pf resistance of sorghum and corn Pages 55-56 Proceedings of the 25th Annual Corn and Sorghl111 Research Conference of the American Seed TrL. Assoclation, Wlchlta

    Google Scholar 

  • Sullivan CY, Ross WM (1979) Selecting for drought and heat resistance in grain sorghum. In: Mussell H, Staples RC (eds) Stress physiology in crop plants. Wiley Interscience, New York, pp 263–281

    Google Scholar 

  • Sullivan CY, Norcio NV, Eastin JD (1977) Plant responses to high temperatures. In: Genetic diversity in plants 1977. Springer, Boston, MA, pp 301–317

    Google Scholar 

  • Sundaram NV, Palmer LT, Nagarajan K, Prescott JM (1972) Disease survey of sorghum and millets in India. Plant Disease Reporter. 56(9):740–743

    Google Scholar 

  • Syed AJ, More AW, Kalpande HV (2017) Character association studies in Sorghum [Sorghum bicolor (L.) Moench] Germplasm lines for shoot fly resistance parameters. Int J Curr Microbiol App Sci 6(12):298–302

    Article  Google Scholar 

  • Tadele T, Mugo S, Likhayo P, Beyene Y (2011) Resistance of three-way cross experimental maize hybrids to post-harvest insect pests, the larger grain borer (Prostephanus truncatus) and maize weevil (Sitophilus zeamais). Int J Trop Insect Sci 31(1–2):3–12

    Google Scholar 

  • Taneja SL, Leuschner K (1984) Methods of rearing, infestation, and evaluation for Chilo partellus resistance in sorghum. In: Proceedings of the international sorghum entomology workshop, 21, 175–188

    Google Scholar 

  • Tao YZ, Henzell RG, Jordan DR, Butler DG, Kelly AM, McIntyre CL (2000) Identification of genomic regions associated with stay green in sorghum by testing RILs in multiple environments. Theor Appl Genet 100(8):1225–1232

    Article  CAS  Google Scholar 

  • Tari G, Laskay Z, Takacs P (2012) Poor responses of Sorghum to abiotic stresses: a review department of plant biology, University of Szeged Szeged, Hungary. J Agro Crop Sci ISSN 0931-2250

    Google Scholar 

  • Tarr SA (1962) Diseases of sorghum, Sudan grass and broomcorn. The commonwealth mycological institute Kew, surrey. Printed in great Britain at the, vol 380. University Press, Oxford

    Google Scholar 

  • Tende RM, Nderitu JH, Mugo S, Songa JM, Olubayo F, Bergvinson D (2005) Screening for development of resistance by the spotted stem borer, Chilo Partellus Swinhoe (Lepidoptera: Pyralidae) to Bt-maize delta-endotoxins. In: African crop science conference proceedings, vol 7, pp 1241–1244

    Google Scholar 

  • Teixeira EI, Fischer G, Van Velthuizen H, Walter C, Ewert F (2013) Global hot-spots of heat stress on agricultural crops due to climate change. Agric For Meteorol 170:206–215

    Article  Google Scholar 

  • Thakur RP, Mathur K (2000) Anthracnose. In: Compendium of Sorghum diseases. American Phytopathological Society, St. Paul, pp 10–12

    Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1997) Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L) Moench. Mol Breed 3(6):439–448

    Article  CAS  Google Scholar 

  • Tuinstra MR, Ejeta G, Goldsbrough P (1998) Evaluation of nearly isogenic sorghum lines contrasting for QTL markers associated with drought tolerance. Crop Sci 38:835–842

    Article  Google Scholar 

  • Upadhyaya HD, Gowda CL (2009) Managing and enhancing the use of germplasm–strategies and methodologies. International crops research Institute for the Semi-Arid Tropics, Patancheru

    Google Scholar 

  • Upadhyaya HD, Wang YH, Sharma R, Sharma S (2013) Identification of genetic markers linked to anthracnose resistance in sorghum using association analysis. Theor Appl Genet 126(6):1649–1657

    Article  PubMed  CAS  Google Scholar 

  • Upadhyaya HD, Reddy KN, Vetriventhan M, Reddy MT, Singh SK (2018) Sorghum germplasm from west and Central Africa maintained in the ICRISAT genebank: status, gaps, and diversity. The Crop Journal 58:1–12

    Article  Google Scholar 

  • USDA (2016) Crop Production Summary 2015. https://www.usda.gov/nass/PUBS/TODAYRPT/cropan16.pdf

  • USDA (United States Department of Agriculture) (2017). https://www.usda.gov/

  • Wang H, Chen G, Zhang H, Liu B, Yang Y, Qin L, Chen E, Guan Y (2014a) Identification of QTLs for salt tolerance at germination and seedling stage of Sorghum bicolor L. Moench. Euphytica 196(1):117–127

    Article  CAS  Google Scholar 

  • Wang TT, Ren ZJ, Liu ZQ, Feng X, Guo RQ, Li BG, Li LG, Jing HC (2014b) SbHKT1; 4, a member of the high-affinity potassium transporter gene family from Sorghum bicolor, functions to maintain optimal Na+/K+ balance under Na+ stress. J Integr Plant Biol 56(3):315–332

    Article  PubMed  CAS  Google Scholar 

  • Wani SP, Chander G (2016) Role of micro and secondary nutrients in achieving food and nutritional security. Adv Plants Agric Res 4(02):01–02

    Google Scholar 

  • Xu W, Rosenow DT, Nguyen HT (2000a) Stay green trait in grain sorghum: relationship between visual rating and leaf chlorophyll concentration. Plant Breed 119(4):365–367

    Article  CAS  Google Scholar 

  • Xu W, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen HT (2000b) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43(3):461–469

    Article  PubMed  CAS  Google Scholar 

  • Young LW, Wilen RW, Bonham-Smith PC (2004) High temperature stress of Brassica napus during flowering reduces micro-and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J Exp Bot 55(396):485–495

    Article  PubMed  CAS  Google Scholar 

  • Youngquist JB, Bramel-Cox P, Maranville JW (1992) Evaluation of alternative screening criteria for selecting nitrogen-use efficient genotypes in sorghum. Crop Sci 32(6):1310–1313

    Article  CAS  Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61(7):1959–1968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgment

The authors greatly acknowledge the funding support from Newton fund (DBT-India and BBSRC, UK) for CINTRIN (Cambridge-India Network for Translational Research in Nitrogen) (#BT/IN/UK-VNC/42/RG/2015-16) to RG, KKR, and SD.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Santosh Deshpande or Rajeev Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Romana, K.K., Chander, G., Deshpande, S., Gupta, R. (2018). Genomic-Assisted Enhancement in Stress Tolerance for Productivity Improvement in Sorghum. In: Gosal, S., Wani, S. (eds) Biotechnologies of Crop Improvement, Volume 3. Springer, Cham. https://doi.org/10.1007/978-3-319-94746-4_12

Download citation

Publish with us

Policies and ethics