Skip to main content

Marker-Assisted Breeding for Abiotic Stress Tolerance in Crop Plants

  • Chapter
  • First Online:

Abstract

The last few decades are evident of the economical uses of utilizing molecular markers of interested genes in plant breeding programs. The potential benefits of these traced markers of bona fide traits enhanced the feasibility of this marker-assisted selection (MAS). In traditional breeding programs, selection is carried out on morphological basis without knowledge of genetics. Regarding the recent yield issues, ecological problems, and enhancing populations, characters related to environmental stress tolerance, disease resistant, mineral and osmotic requirement, etc. should be the public attention. The molecular-assisted selection technology suggests a rapid progress in choosing stress-acclimated crop plants with expanding accuracy of selection. Molecular-aided selection is promising pyramid target traits in a single progeny more conveniently and precisely in few selected generations and little accidental harms. As it is a cost-effective and less time-consuming strategy, it can be suggested for long-term improvement in stress tolerance of economically important crops with some limitations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Haleem H, Carter TE, Purcell LC et al (2012) Mapping of quantitative trait loci for canopy-wilting trait in soybean (Glycine max L. Merr). Theor Appl Genet 125:837. https://doi.org/10.1007/s00122-012-1876-9

    Article  PubMed  CAS  Google Scholar 

  • Abdel-Haleem H, Carter TE, Rufty TW et al (2014) Quantitative trait loci controlling aluminum tolerance in soybean: candidate gene and single nucleotide polymorphism marker discovery. Mol Breed 33:851. https://doi.org/10.1007/s11032-013-9999-5

    Article  CAS  Google Scholar 

  • Allam M, Revilla P, Djemel A et al (2016) Identification of QTLs involved in cold tolerance in sweet x field corn. Euphytica 208:353. https://doi.org/10.1007/s10681-015-1609-7

    Article  CAS  Google Scholar 

  • Almeida GD, Makumbi D, Magorokosho C et al (2013) QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance. Theor Appl Genet 126:583. https://doi.org/10.1007/s00122-012-2003-7

    Article  PubMed  CAS  Google Scholar 

  • Almeida GD, Nair S, Bore’m A, Cairns J, Trachsel S, Ribaut JM et al (2014) Molecular mapping across three populations reveals a QTL hotspot region on chromosome 3 for secondary traits associated with drought tolerance in tropical maize. Mol Breed 34:701–715 pmid:25076840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Afzal M, Ahmed R, Maqsood MA, Shahzad SM, Tahir MA, Akhtar N, Aziz A (2012) Growth response of salt-sensitive and salt-tolerant sugarcane genotypes to potassium nutrition under salt stress. Arch Agron Soil Sci 58:385–398

    Article  CAS  Google Scholar 

  • Azam F, Chang X, Jing R (2015) Mapping QTL for chlorophyll fluorescence kinetics parameters at seedling stage as indicators of heat tolerance in wheat. Euphytica 202:245. https://doi.org/10.1007/s10681-014-1283-1

    Article  CAS  Google Scholar 

  • Baltazar MD, Ignacio JCI, Thomson MJ, Ismail AM, Mendioro MS, Septiningsih EM (2014) QTL mapping for tolerance of anaerobic germination from IR64 and the aus landrace Nanhi using SNP genotyping. Euphytica 197:251–260

    Article  CAS  Google Scholar 

  • Barakat MN, Saleh MS, Al-Doss AA et al (2015) Mapping of QTLs associated with abscisic acid and water stress in wheat. Biol Plant 59:291. https://doi.org/10.1007/s10535-015-0499-9

    Article  CAS  Google Scholar 

  • Chankaew S, Isemura T, Naito K et al (2014) QTL mapping for salt tolerance and domestication related traits in Vigna marina subsp. oblonga, a halophytic species. Theor Appl Genet 127:691. https://doi.org/10.1007/s00122-013-2251-1

    Article  PubMed  CAS  Google Scholar 

  • Christopher J, Christopher M, Jennings R et al (2013) QTL for root angle and number in a population developed from bread wheats (Triticum aestivum) with contrasting adaptation to water-limited environments. Theor Appl Genet. 126:1563. https://doi.org/10.1007/s00122-013-2074-0

    Article  PubMed  CAS  Google Scholar 

  • Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B., & Pang, E. C. K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica, 142(1–2), 169–196.

    Google Scholar 

  • Dai J, Bai G, Zhang D, Hong D (2013) Validation of quantitative trait loci for aluminum tolerance in Chinese wheat landrace FSW. Euphytica 192:171–179. https://doi.org/10.1007/s10681-012-0807-9

    Article  CAS  Google Scholar 

  • Devi EL, Devi CP, Kumar S, Sharma S, Beemrote A, Chongtham SK, Akoijam R (2017) Marker assisted selection (MAS) towards generating stress tolerant crop plants. Plant Gene 11:205–218

    Google Scholar 

  • Dufey I, Draye X, Lutts S, Lorieux M, Martinez C, Bertin P (2015) Novel QTLs in an interspecific backcross Oryza sativa x Oryza glaberrima for resistance to iron toxicity in rice. Euphytica 204:609. https://doi.org/10.1007/s10681-014-1342-7

    Article  CAS  Google Scholar 

  • Esten Mason R, Mondal S, Beecher FW et al (2011) Genetic loci linking improved heat tolerance in wheat (Triticumaestivum L.) to lower leaf and spike temperatures under controlled conditions. Euphytica 180:181. https://doi.org/10.1007/s10681-011-0349-6

    Article  Google Scholar 

  • Forster BP, Ellis RP, Thomas WTB et al (2000) The development and application of molecular markers for abiotic stress tolerance in barley. J Exp Bot 51:19–27

    Article  CAS  PubMed  Google Scholar 

  • Fukao T, Xiong L (2013) Genetic mechanisms conferring adaptation to submergence and drought in rice: simple or complex? Curr Opin Plant Biol 16:196–204

    Article  CAS  PubMed  Google Scholar 

  • Fukuda A, Shiratsuchi H, Fukushima A, Yamaguchi H, Mochida H, Terao T, Ogiwara H (2012) Detection of chromosomal regions affecting iron concentration in rice shoots subjected to excess ferrous iron using chromosomal segment substitution lines between Japonica and Indica. Plant Prod Sci 15:183–191

    Article  Google Scholar 

  • George MT, Luseko AC, Deogracious P et al (2013) Marker assisted selection for common bean diseases improvement in Tanzania: prospects and future needs. InTech, U.K, pp 121–147 https://doi.org/10.5772/52823

  • Golabadi M, Arzani A, MirmohammadiMaibody SAM et al (2011) Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat. Euphytica 177:207. https://doi.org/10.1007/s10681-010-0242-8

    Article  Google Scholar 

  • Gonzaga ZJC, Carandang J, Sanchez DL et al (2016) Mapping additional QTLs from FR13A to increase submergence tolerance in rice beyond SUB1. Euphytica 209:627. https://doi.org/10.1007/s10681-016-1636-z

    Article  CAS  Google Scholar 

  • Ha BK, Vuong TD, Velusamy V et al (2013) Genetic mapping of quantitative trait loci conditioning salt tolerance in wild soybean (Glycine soja) PI 483463. Euphytica 193:79. https://doi.org/10.1007/s10681-013-0944-9

    Article  CAS  Google Scholar 

  • Hamwieh A, Imtiaz M, Malhotra RS (2013) Multi-environment QTL analyses for drought-related traits in a recombinant inbred population of chickpea (Cicer arientinum L.). Theor Appl Genet 126:1025–1038. https://doi.org/10.1007/s00122-012-2034-0

    Article  PubMed  CAS  Google Scholar 

  • Hoque MMI, Jun Z, Guoying W (2015) Mapping QTLs associated with salinity tolerance in maize at seedling stage. Int J 3(10):1–23

    Google Scholar 

  • Hossain H, Rahman MA, Alam MS, Singh RK (2015) Mapping of quantitative trait loci associated with reproductive-stage salt tolerance in rice. J Agron Crop Sci 201(1):17–31

    Article  CAS  Google Scholar 

  • Iglesias-García R, Prats E, Fondevilla S, Satovic Z, Rubiales D (2015) Quantitative trait loci associated to drought adaptation in pea (Pisum sativum L.). Plant Mol Biol Rep 33:1768. https://doi.org/10.1007/s11105-015-0872-z

    Article  CAS  Google Scholar 

  • Jena K, Mackill D (2008) Molecular markers and their use in marker assisted selection in rice. Crop Sci 48:1266–1276

    Article  Google Scholar 

  • Jiang GL (2013) Molecular markers and marker-assisted breeding in plants. In: Plant breeding from laboratories to fields. Intech, Croatia, pp 45–83

    Google Scholar 

  • Jongdee B, Fukai S, Cooper M (2002) Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Res 76:153–163

    Article  Google Scholar 

  • Kage U, Kumar A, Dhokane D, Karre S, Kushalappa AC (2016) Functional molecular markers for crop improvement. Crit Rev Biotechnol 36(5):917–930

    Article  CAS  PubMed  Google Scholar 

  • Kiriga WJ, Yu Q, Bill R (2016) Breeding and genetic engineering of drought-resistant crops. Int J Agric Crop 9(1):7–12

    Google Scholar 

  • Klein A, Houtin H, Rond C, Marget P, Jacquin F, Boucherot K, Huart M, Rivière N, Boutet G, Lejeune-Hénaut I, Burstin J (2014) QTL analysis of frost damage in pea suggests different mechanisms involved in frost tolerance. Theor Appl Genet 127:1319–1330

    Article  PubMed  Google Scholar 

  • Kretzschmar T, Pelayo MA, Trijatmiko KR, Gabunada LF, Alam R, Jimenez R et al (2015) A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nat Plants 1:15124. https://doi.org/10.1038/nplants.2015.124

    Article  PubMed  CAS  Google Scholar 

  • Ku LX, Sun ZH, Wang CL, Zhang J, Zhao RF, Liu HY, Chen YH (2012) QTL mapping and epistasis analysis of brace root traits in maize. Mol Breed 30(2):697–708

    Article  Google Scholar 

  • Lang NT, Nha CT, HA PTT, Buu BC (2013) Quantitative trait loci (QTLs) associated with drought tolerance in rice (Oryza sativa L.). SABRAO J Breed Genet 45(3):409–421

    Google Scholar 

  • Lateef DD (2015) DNA marker technologies in plants and applications for crop improvements. J Biosci Med 3:7–18

    CAS  Google Scholar 

  • Leon TBD, Linscombe S, Subudhi PK (2016) Molecular dissection of seedling salinity tolerance in rice (Oryza sativa L.) using a high-density GBS-based SNP linkage map. Rice 9:52. https://doi.org/10.1186/s12284-016-0125-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Li C, Sun B, Li Y, Liu C, Wu X, Zhang D, Wang T (2016) Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations. BMC Genomics 17(1):894

    Article  PubMed  PubMed Central  Google Scholar 

  • Lou Q, Chen L, Mei H, Wei H, Feng F, Wang P, Xia H, Li T, Luo L (2015) Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice. J Exp Bot 66(15):4749–4757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubberstedt T, Melchinger AE, Fahr S et al (1998) QTL mapping in testcrosses of flint lines of maize: III. Comparison across populations for forage traits. Crop Sci 38:1278–1289

    Article  Google Scholar 

  • Lubberstedt T, Zein I, Andersen JR et al (2005) Development and application of functional markers in maize. Euphytica 146:101–108

    Article  CAS  Google Scholar 

  • Malik S, Rahman M, Malik TA (2015) Genetic mapping of potential QTLs associated with drought tolerance in wheat. J Anim Plant Sci 25(4):1032–1040

    CAS  Google Scholar 

  • Manangkil OE, Vu HTT, Mori N, Yoshida S, Nakamura C (2013) Mapping of quantitative trait loci controlling seedling vigor in rice (Oryza sativa L.) under submergence. Euphytica 192:63–75. https://doi.org/10.1007/s10681-012-0857-z

    Article  CAS  Google Scholar 

  • Mano Y, Omori F, Takeda K (2012) Construction of intraspecific linkage maps, detection of a chromosome inversion, and mapping of QTL for constitutive root aerenchyma formation in the teosinte Zeanica raguensis. Mol Breed 29(1):137–146

    Article  Google Scholar 

  • Mathews KL, Malosetti M, Chapman S et al (2008) Multi-environment QTL mixed models for drought stress adaptation in wheat. Theor Appl Genet 117:1077–1091

    Article  PubMed  Google Scholar 

  • McCartney C, Somers D, Fedak G et al (2007) The evaluation of FHB resistance QTLs introgressed into elite Canadian spring wheat germplasm. Mol Breed 20:209–221

    Article  Google Scholar 

  • Merchuk-Ovnat L, Barak V, Fahima T, Ordon F, Lidzbarsky GA, Krugman T, Saranga Y (2016) Ancestral QTL alleles from wild emmer wheat improve drought resistance and productivity in modern wheat cultivars. Front Plant Sci 7:452. https://doi.org/10.3389/fpls.2016.00452

    Article  PubMed  PubMed Central  Google Scholar 

  • Messmer R, Fracheboud Y, Bänziger M, Stamp P, Ribaut JM (2011) Drought stress and tropical maize: QTLs for leaf greenness, plant senescence, and root capacitance. Field Crop Res 124(1):93–103

    Article  Google Scholar 

  • Miedaner T, Korzun V (2012) Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology 102:560–566

    Article  PubMed  Google Scholar 

  • Mohamed A, Ali R, Elhassan O et al (2014) First products of DNA marker-assisted selection in sorghum released for cultivation by farmers in sub-saharan. Africa J Plant Sci Mol Breed 3:1–10

    Article  CAS  Google Scholar 

  • Mukeshimana G, Butare L, Cregan PB, Blair MW, Kelly JD (2014) Quantitative trait loci associated with drought tolerance in common bean. Crop Sci 54:923–938. https://doi.org/10.2135/cropsci2013.06.0427

    Article  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolić A, Anđelković V, Dodig D, Ignjatović-Micić D (2011) Quantitative trait loci for yield and morphological traits in maize under drought stress. Genetika 43(2):263–276

    Article  Google Scholar 

  • Nikolić A, Ignjatović-Micić D, Dodig D, Anđelković V, andLazić-Jančić V (2012) Identification of QTLs for yield and drought-related traits in maize: assessment of their causal relationships. Biotechnol Biotechnol Equip 26(3):2952–2960

    Article  Google Scholar 

  • Nikolić A, Anđelković V, Dodig D, Mladenović-Drinić S, Kravić N, andIgnjatović-Micić D (2013) Identification of QTL-s for drought tolerance in maize, II: yield and yield components. Genetika 45(2):341–350

    Article  Google Scholar 

  • O’Boyle PD, James D, Kelly JD, Kirk WW (2007) Use of marker-assisted selection to breed for resistance to common bacterial blight in common bean. J Am Soc Hortic Sci 132(3):381–386

    Google Scholar 

  • Oliveira LK, Melo LC, Brondani C, Peloso MJD, Brondani RPV (2008) Backcross assisted by microsatellite markers in common bean. Genet Mol Res 7(4):1000–1010

    Article  CAS  PubMed  Google Scholar 

  • Osman KA, Tang B, Wang Y, Chen J, Yu F, Li L et al (2013) Dynamic QTL analysis and candidate gene mapping for waterlogging tolerance at maize seedling stage. PLoS One 8(11):e79305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paliwal R, Roder MS, Kumar U, Srivastava JP, Joshi AK (2012) QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.). Theor Appl Genet. 125:561–575. https://doi.org/10.1007/s00122-012-1853-3

    Article  PubMed  Google Scholar 

  • Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017) Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front Plant Sci 8:1–15

    PubMed  PubMed Central  Google Scholar 

  • Prasanna B, Pixley K, Warburton ML, Xie C-X (2010) Molecular marker-assisted breeding options for maize improvement in Asia. Mol Breed 26:339–356

    Article  CAS  Google Scholar 

  • Prince SJ, Beena R, Michael GS, Senthivel S, Chandra BR (2015) Mapping consistent Rice (Oryza sativa L.) yield QTLs under drought stress in target rainfed environments. Rice 8:25. https://doi.org/10.1186/s12284-015-0053-6

    Article  PubMed Central  Google Scholar 

  • Pushpavalli R, Krishnamurthy L, Thudi M, Gaur PM, Rao MV, Siddique KHM, Colmer TD, Turner NC, Varshney RK, Vadez V (2015) Two key genomic regions harbour QTLs for salinity tolerance in ICCV 2 × JG 11 derived chickpea (Cicer arietinum L.) recombinant inbred lines. BMC Plant Biol 15:124. https://doi.org/10.1186/s12870-015-0491-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rahman H, Pekic S, Lazic-Jancic V, Quarrie SA, Shah SM, Pervez A, Shah MM (2011) Molecular mapping of quantitative trait loci for drought tolerance in maize plants. Genet Mol Res 10(2):889–901

    Article  CAS  PubMed  Google Scholar 

  • Reddy VRP (2017) New concepts in plant breeding and genetics. Adv Plants Agric Res 7(1):00245. https://doi.org/10.15406/apar.2017.07.00245

    Article  Google Scholar 

  • Revilla P, Rodríguez VM, Ordás A, Rincent R, Charcosset A, Giauffret C, Melchinger AE, Schön C-C, Bauer E, Altmann T et al (2016) Association mapping for cold tolerance in two large maize inbred panels. BMC Plant Biol 16(1):1–10

    Article  CAS  Google Scholar 

  • Rozema J, Flowers T (2008) Crops for a salinized world. Science 322:1478–1480

    Article  CAS  PubMed  Google Scholar 

  • Ruane J, Sonnino A (2007) Marker-assisted selection as a tool for genetic improvement of crops, livestock, forestry and fish in developing countries: an overview of the issues. FAO, Rome, pp 3–13

    Google Scholar 

  • Rumanti IA, Nugraha Y, Wening RH, Gonzaga ZJC, Nasution A, Kusdiaman D, Septiningsih EM (2016) Development of high-yielding rice varieties suitable for swampy lands in Indonesia. Plant Breed Biotechnol 4(4):413–425

    Article  Google Scholar 

  • Sangodele EA, Hanchinal RR, Hanamaratti NG, Shenoy V, Kumar MV (2014) Analysis of drought tolerant QTL linked to physiological and productivity component traits under water-stress and non-stress in rice (Oryza sativa L.). Int J Curr Res Acd Rev 2(5):108–113

    CAS  Google Scholar 

  • Septiningsih EM, Sanchez DL, Singh N et al (2012) Identifying novel QTLs for submergence tolerance in rice cultivars IR72 and Madabaru. Theor Appl Genet 124:867. https://doi.org/10.1007/s00122-011-1751-0

    Article  PubMed  Google Scholar 

  • Sharma AD, Sharma H, Lightfoot DA (2011) The genetic control of tolerance to aluminum toxicity in the ‘Essex’ by ‘Forrest’ recombinant inbred line population. Theor Appl Genet 122:687–694. https://doi.org/10.1007/s00122-010-1478-3

    Article  PubMed  CAS  Google Scholar 

  • Simova-Stoilova L, Vassileva V, Feller U (2016) Selection and breeding of suitable crop genotypes for drought and heat periods in a changing climate: which morphological and physiological properties should be considered. Agriculture 6(2):1–19

    Article  Google Scholar 

  • Singh BD, Singh AK (2015) Linkage mapping of molecular markers and oligogenes. In: Marker-assisted plant breeding: principles and practices. SpringerNature, pp 151–183

    Google Scholar 

  • Slafer GA, Araus JL, Royo C, Del Moral LFG (2005) Promising eco-physiological traits for genetic improvement of cereal yields in Mediterranean environments. Ann Appl Biol 146:61–70

    Article  Google Scholar 

  • Talukder SK, Babar MA, Vijayalakshmi K, Poland J, Prasad PV, Bowden R, Fritz A (2014) Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.). BMC Genet 15:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiwari C, Wallwork H, Kumar U, Dhari R, Arun B, Mishra VK, Reynolds MP, Joshi AK (2013) Molecular mapping of high temperature tolerance in bread wheat adapted to the Eastern Gangetic Plain region of India. Field Crop Res 154:201–210

    Article  Google Scholar 

  • Tollefson J (2011) Drought-tolerant maize gets US debut. Nature 469:144

    Article  CAS  PubMed  Google Scholar 

  • Toojinda T, Baird E, Booth A et al (1998) Introgression of quantitative trait loci (QTLs) determining stripe rust resistance in barley: an example of marker-assisted line development. Theor Appl Genet 96:123–131

    Article  CAS  Google Scholar 

  • Turki N, Shehzad T, Harrabi M et al (2015) Detection of QTLs associated with salinity tolerance in durum wheat based on association analysis. Euphytica 201:29. https://doi.org/10.1007/s10681-014-1164-7

    Article  CAS  Google Scholar 

  • Vadez V, Krishnamurthy L, Thudi M, Anuradha C, Colmer TD, Turner NC, Siddique KHM, Gaur PM, Varshney RK (2012) Assessment of ICCV 2 3 JG 62 chickpea progenies shows sensitivity of reproduction to salt stress and reveals QTL for seed yield and yield components. Mol Breed 30(1):9–21

    Article  Google Scholar 

  • Venuprasad R, Bool M, Quiatchon L et al (2012) A large-effect QTL for rice grain yield under upland drought stress on chromosome 1. Mol Breed 30:535–547

    Article  Google Scholar 

  • Witcombe JR, Virk DS (2001) Number of crosses and population size for participatory and classical plant breeding. Euphytica 122:451–462

    Article  Google Scholar 

  • Wu LB, Shhadi MY, Gregorio G, Matthus E, Becker M, Frei M (2014) Genetic and physiological analysis of tolerance to acute iron toxicity in rice. Rice 7:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48(2):391–407

    Article  Google Scholar 

  • Xu Y, Li S, Li L, Zhang X, Xu H, An D (2013) Mapping QTLs for salt tolerance with additive, epistatic and QTL 3 treatment interaction effects at seedling stage in wheat. Plant Breed 132:276–283

    Article  CAS  Google Scholar 

  • Xu, Y. (2010). Molecular plant breeding. Cabi. Wallingford , U.K

    Google Scholar 

  • Ye C, Tenorio FA, Argayoso MA, Laza MA, Koh H, Redoña ED, Jagadish KSV, Gregorio GB (2015) Identifying and confirming quantitative trait loci associated with heat tolerance at flowering stage in different rice populations. BMC Genet 16:41. https://doi.org/10.1186/s12863-015-0199-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu M, Chen G (2013) Conditional QTL mapping for waterlogging tolerance in two RILs populations of wheat. Springerplus 2:245

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaidi PH, Rashid Z, Vinayan MT, Almeida GD, Phagna RK, Babu R (2015) QTL mapping of agronomic waterlogging tolerance using recombinant inbred lines derived from tropical maize (Zea mays L.) germplasm. PLoS One 10(4):e0124350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Cui F, Wang L, Li J, Ding A, Zhao C, Bao Y, Yang Q, Wang H (2013a) Conditional and unconditional QTL mapping of drought-tolerance-related traits of wheat seedling using two related RIL populations. J Genet 92:213–231

    Article  PubMed  Google Scholar 

  • Zhang X, Tang B, Yu F, Li L, Wang M, Xue Y, andQiu F (2013b) Identification of major QTL for waterlogging tolerance using genome-wide association and linkage mapping of maize seedlings. Plant Mol Biol Report 31(3):594–606

    Article  CAS  Google Scholar 

  • Zhang X, Lu G, Long W, Zou X, Li F, Nishio T (2014) Recent progress in drought and salt tolerance studies in Brassica crops. Breed Sci 64(1):60–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Lei J, Huang Y, Zhu S, Chen H, Huang R, Peng Z, Tu Q, Shen X, Yan S (2016) Mapping quantitative trait loci for heat tolerance at anthesis in rice using chromosomal segment substitution lines. Breed Sci 66:358–366. https://doi.org/10.1270/jsbbs.15084

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu JJ, Wang XP, Sun CX, Zhu XM, Meng LI, Zhang GD, Wang ZL (2011) Mapping of QTL associated with drought tolerance in a semi-automobile rain shelter in maize (Zea mays L.). Agric Sci China 10(7):987–996

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wani, S.H. et al. (2018). Marker-Assisted Breeding for Abiotic Stress Tolerance in Crop Plants. In: Gosal, S., Wani, S. (eds) Biotechnologies of Crop Improvement, Volume 3. Springer, Cham. https://doi.org/10.1007/978-3-319-94746-4_1

Download citation

Publish with us

Policies and ethics