Skip to main content

Baryogenesis During Reheating via the Ratchet Mechanism

  • Chapter
  • First Online:
Cosmological Implications of Quantum Anomalies

Part of the book series: Springer Theses ((Springer Theses))

  • 329 Accesses

Abstract

Another interesting and relatively unorthodox approach to generating the baryon asymmetry of the universe is via the inflaton during the reheating epoch. Unlike the dilution problems associated with inflationary cogenesis considered above, the difficulties with a reheating scenario are related to the high level of uncertainty and complexity of the dynamics associated with the reheating phase. The exact nature of the reheating epoch is mostly unknown, but it is a period dominated by the inflaton dynamics, and as such is strongly related to the properties of the inflaton and inflationary potential. To try to alleviate this issue and for simplicity, we will consider a Starobinsky inflationary scenario, which converges to the usual \( \mu ^2\Phi ^2 \) potential during reheating. We propose a new scenario for Baryogenesis during the reheating epoch that utilises the Ratchet mechanism, a model inspired by molecular motors in biological systems, and their ability to generate directed motion. This is achieved through the correlated behaviour between the inflaton and a complex scalar baryon. If the inflaton and the scalar baryon couple via a derivative coupling, the behaviour of the scalar baryon phase \( \theta \) is found to be analogous to that of the forced pendulum, potentially producing a non-vanishing value of \( \dot{\theta }\) which is necessary to generate a non-zero baryon number density [1]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Bamba, N.D. Barrie, A. Sugamoto, T. Takeuchi, K. Yamashita, Ratchet baryogenesis with an analogy to the forced pendulum (2016), arXiv:1610.03268

  2. A. Albrecht, P.J. Steinhardt, M.S. Turner, F. Wilczek, Reheating an inflationary universe. Phys. Rev. Lett. 48, 1437 (1982). https://doi.org/10.1103/PhysRevLett.48.1437

    Article  ADS  Google Scholar 

  3. L. Kofman, A.D. Linde, A.A. Starobinsky, Reheating after inflation. Phys. Rev. Lett. 73, 3195–3198 (1994). https://doi.org/10.1103/PhysRevLett.73.3195

    Article  ADS  Google Scholar 

  4. Y. Shtanov, J.H. Traschen, R.H. Brandenberger, Universe reheating after inflation. Phys. Rev. D 51, 5438–5455 (1995). https://doi.org/10.1103/PhysRevD.51.5438

    Article  ADS  Google Scholar 

  5. A. Dolgov, K. Freese, Calculation of particle production by Nambu Goldstone bosons with application to inflation, reheating and baryogenesis. Phys. Rev. D 51, 2693–2702 (1995). https://doi.org/10.1103/PhysRevD.51.2693

    Article  ADS  Google Scholar 

  6. L.A. Kofman, The Origin of matter in the universe: reheating after inflation (1996), arXiv:9605155

  7. L. Kofman, A.D. Linde, A.A. Starobinsky, Towards the theory of reheating after inflation. Phys. Rev. D 56, 3258–3295 (1997). https://doi.org/10.1103/PhysRevD.56.3258

    Article  ADS  Google Scholar 

  8. D.J.H. Chung, E.W. Kolb, A. Riotto, Production of massive particles during reheating. Phys. Rev. D 60, 063504 (1999). https://doi.org/10.1103/PhysRevD.60.063504

    Article  ADS  Google Scholar 

  9. S. Davidson, S. Sarkar, Thermalization after inflation. JHEP 11, 012 (2000). https://doi.org/10.1088/1126-6708/2000/11/012

    Article  ADS  Google Scholar 

  10. E.W. Kolb, A. Notari, A. Riotto, On the reheating stage after inflation. Phys. Rev. D 68, 123505 (2003). https://doi.org/10.1103/PhysRevD.68.123505

    Article  ADS  Google Scholar 

  11. B.A. Bassett, S. Tsujikawa, D. Wands, Inflation dynamics and reheating. Rev. Mod. Phys. 78, 537–589 (2006). https://doi.org/10.1103/RevModPhys.78.537

    Article  ADS  Google Scholar 

  12. R. Allahverdi, R. Brandenberger, F.-Y. Cyr-Racine, A. Mazumdar, Reheating in inflationary cosmology: theory and applications. Ann. Rev. Nucl. Part. Sci. 60, 27–51 (2010). https://doi.org/10.1146/annurev.nucl.012809.104511

    Article  ADS  Google Scholar 

  13. F. Takayama, Extremely long-lived charged massive particles as a probe for reheating of the universe. Phys. Rev. D 77, 116003 (2008). https://doi.org/10.1103/PhysRevD.77.116003

    Article  ADS  Google Scholar 

  14. J. Martin, C. Ringeval, First CMB constraints on the inflationary reheating temperature. Phys. Rev. D 82, 023511 (2010). https://doi.org/10.1103/PhysRevD.82.023511

    Article  ADS  Google Scholar 

  15. L. Dai, M. Kamionkowski, J. Wang, Reheating constraints to inflationary models. Phys. Rev. Lett. 113, 041302 (2014). https://doi.org/10.1103/PhysRevLett.113.041302

    Article  ADS  Google Scholar 

  16. G.F. Giudice, E.W. Kolb, A. Riotto, Largest temperature of the radiation era and its cosmological implications. Phys. Rev. D 64, 023508 (2001). https://doi.org/10.1103/PhysRevD.64.023508

    Article  ADS  Google Scholar 

  17. A. Dolgov, K. Freese, R. Rangarajan, M. Srednicki, Baryogenesis during reheating in natural inflation and comments on spontaneous baryogenesis. Phys. Rev. D 56, 6155–6165 (1997). https://doi.org/10.1103/PhysRevD.56.6155

    Article  ADS  Google Scholar 

  18. E.W. Kolb, M.S. Turner, The early universe. Front. Phys. 69, 1–547 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  19. A.A. Starobinsky, A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99–102 (1980). https://doi.org/10.1016/0370-2693(80)90670-X

    Article  ADS  MATH  Google Scholar 

  20. V.F. Mukhanov, G.V. Chibisov, Quantum fluctuations and a nonsingular universe. JETP Lett. 33, 532–535 (1981). [Pisma Zh. Eksp. Teor. Fiz. 33, 549 (1981)]

    Google Scholar 

  21. G. Magnano, M. Ferraris, M. Francaviglia, Nonlinear gravitational Lagrangians. Gen. Relativ. Gravit. 19, 465 (1987). https://doi.org/10.1007/BF00760651

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation. Astron. Astrophys. 594, A20 (2016b). https://doi.org/10.1051/0004-6361/201525898

    Article  Google Scholar 

  23. D.S. Gorbunov, A.A. Tokareva, Inflation and reheating in the Starobinsky model with conformal Higgs Field. Phys. Part. Nucl. Lett. 10, 633–636 (2013). https://doi.org/10.1134/S1547477113070030

    Article  Google Scholar 

  24. J. Ellis, M.A.G. Garcia, D.V. Nanopoulos, K.A. Olive, Calculations of inflaton decays and reheating: with applications to no-scale inflation models. JCAP 1507(07), 050 (2015). https://doi.org/10.1088/1475-7516/2015/07/050

  25. S. Dimopoulos, L. Susskind, On the baryon number of the universe. Phys. Rev. D 18, 4500–4509 (1978). https://doi.org/10.1103/PhysRevD.18.4500

    Article  ADS  Google Scholar 

  26. I. Affleck, M. Dine, A new mechanism for baryogenesis. Nucl. Phys. B 249, 361 (1985). https://doi.org/10.1016/0550-3213(85)90021-5

    Article  ADS  Google Scholar 

  27. A.G. Cohen, D.B. Kaplan, Spontaneous baryogenesis. Nucl. Phys. B 308, 913–928 (1988). https://doi.org/10.1016/0550-3213(88)90134-4

    Article  ADS  Google Scholar 

  28. M. Yoshimura, Towards resolution of hierarchy problems in a cosmological context. Phys. Lett. B 608, 183–188 (2005). https://doi.org/10.1016/j.physletb.2005.01.025

    Article  ADS  Google Scholar 

  29. K. Bamba, M. Yoshimura, Curvaton scenario in the presence of two dilatons coupled to the scalar curvature. Prog. Theor. Phys. 115, 269–308 (2006). https://doi.org/10.1143/PTP.115.269

    Article  ADS  MATH  Google Scholar 

  30. A. Minamizaki, A. Sugamoto, Can the baryon number density and the cosmological constant be interrelated? Phys. Lett. B 659, 656–660 (2008). https://doi.org/10.1016/j.physletb.2007.11.052

    Article  ADS  Google Scholar 

  31. P. Reimann, R. Bartussek, R. Häußler, P. Hänggi, Brownian motors driven by temperature oscillations. Phys. Lett. A 215, 26–31 (1996). https://doi.org/10.1016/0375-9601(96)00222-8

    Article  ADS  Google Scholar 

  32. T. Takeuchi, A. Minamizaki, A. Sugamoto, Ratchet model of baryogenesis, in Strong Coupling Gauge Theories in LHC Era. Proceedings, International Workshop, SCGT 09, Nagoya, Japan, 8–11 Dec 2009 (2011), pp. 378–384. https://doi.org/10.1142/9789814329521_0041

  33. A.G. Cohen, D.B. Kaplan, Thermodynamic generation of the baryon asymmetry. Phys. Lett. B 199, 251–258 (1987). https://doi.org/10.1016/0370-2693(87)91369-4

    Article  ADS  Google Scholar 

  34. N.F. Pedersen, O.H. Soerensen, B. Dueholm, J. Mygind, Half-harmonic parametric oscillations in josephson junctions. J. Low Temp. Phys. 38, 1–23 (1980). https://doi.org/10.1007/BF00115266

    Article  ADS  Google Scholar 

  35. D. D’Humieres, M.R. Beasley, B.A. Huberman, A. Libchaber, Chatoic states and routes to chaos int he forced pendulum. Phys. Rev. A 26, 3483–3496 (1982). https://doi.org/10.1103/PhysRevA.26.3483

    Article  ADS  Google Scholar 

  36. S.Y. Khlebnikov, M.E. Shaposhnikov, The statistical theory of anomalous fermion number nonconservation. Nucl. Phys. B 308, 885–912 (1988). https://doi.org/10.1016/0550-3213(88)90133-2

    Article  ADS  Google Scholar 

  37. J.A. Harvey, M.S. Turner, Cosmological baryon and lepton number in the presence of electroweak fermion number violation. Phys. Rev. D 42, 3344–3349 (1990). https://doi.org/10.1103/PhysRevD.42.3344

    Article  ADS  Google Scholar 

  38. A.G. Cohen, D.B. Kaplan, A.E. Nelson, Progress in electroweak baryogenesis. Ann. Rev. Nucl. Part. Sci. 43, 27–70 (1993). https://doi.org/10.1146/annurev.ns.43.120193.000331

  39. T. Yanagida, Horizontal symmetry and masses of neutrinos. Conf. Proc. C 7902131, 95–99 (1979)

    Google Scholar 

  40. T. Yanagida, Horizontal symmetry and masses of neutrinos. Prog. Theor. Phys. 64, 1103 (1980). https://doi.org/10.1143/PTP.64.1103

    Article  ADS  Google Scholar 

  41. P. Ramond, The family group in grand unified theories, in International Symposium on Fundamentals of Quantum Theory and Quantum Field Theory Palm Coast, Florida, February 25–March 2, 1979, pp. 265–280

    Google Scholar 

  42. V.A. Kuzmin, V.A. Rubakov, M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe. Phys. Lett. B 155, 36 (1985). https://doi.org/10.1016/0370-2693(85)91028-7

    Article  ADS  Google Scholar 

  43. M. Trodden, Electroweak baryogenesis. Rev. Mod. Phys. 71, 1463–1500 (1999). https://doi.org/10.1103/RevModPhys.71.1463

    Article  ADS  Google Scholar 

  44. M. Fukugita, T. Yanagida, Baryogenesis without grand unification. Phys. Lett. B 174, 45–47 (1986). https://doi.org/10.1016/0370-2693(86)91126-3

    Article  ADS  Google Scholar 

  45. T. Moroi, H. Murayama, M. Yamaguchi, Cosmological constraints on the light stable gravitino. Phys. Lett. B 303, 289–294 (1993). https://doi.org/10.1016/0370-2693(93)91434-O

    Article  ADS  Google Scholar 

  46. M. Bolz, A. Brandenburg, W. Buchmuller, Thermal production of gravitinos. Nucl. Phys. B 606, 518–544 (2001). https://doi.org/10.1016/S0550-3213(01)00132-8, https://doi.org/10.1016/j.nuclphysb.2007.09.020. [Erratum: Nucl. Phys. B 790, 336 (2008)]

  47. M. Kawasaki, K. Kohri, T. Moroi, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles. Phys. Rev. D 71, 083502 (2005). https://doi.org/10.1103/PhysRevD.71.083502

    Article  ADS  Google Scholar 

  48. M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese, A. Riotto, Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-alpha forest. Phys. Rev. D 71, 063534 (2005). https://doi.org/10.1103/PhysRevD.71.063534

    Article  ADS  Google Scholar 

  49. F. Takahashi, M. Yamada, Spontaneous baryogenesis from asymmetric inflaton. Phys. Lett. B 756, 216–220 (2016). https://doi.org/10.1016/j.physletb.2016.03.020

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil David Barrie .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barrie, N.D. (2018). Baryogenesis During Reheating via the Ratchet Mechanism. In: Cosmological Implications of Quantum Anomalies. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-94715-0_4

Download citation

Publish with us

Policies and ethics