Skip to main content

Pattern Matching for k-Track Permutations

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10979))

Included in the following conference series:

Abstract

Given permutations \(\tau \) and \(\pi \), the permutation pattern (PP) problem is to decide whether \(\pi \) occurs in \(\tau \) as an order-isomorphic subsequence. Although an FPT algorithm is known for PP parameterized by the size of the pattern \(|\pi |\) [Guillemot and Marx 2014], the high complexity of this algorithm makes it impractical for most instances. In this paper we approach the PP problem from k-track permutations, i.e. those permutations that are the union of k increasing patterns or, equivalently, those permutation that avoid the decreasing pattern \((k+1) k \ldots 1\). Recently, k-track permutations have been shown to be central combinatorial objects in the study of the PP problem. Indeed, the PP problem is NP-complete when \(\pi \) is 321-avoiding and \(\tau \) is 4321-avoiding but is solvable in polynomial-time if both \(\pi \) and \(\tau \) avoid 321. We propose and implement an exact algorithm, FPT for parameters k and \(|\pi |\), which allows to solve efficiently some large instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.haskell.org/.

References

  1. Ahal, S., Rabinovich, Y.: On complexity of the subpattern problem. SIAM JDM 22(2), 629–649 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Albert, M.H., Aldred, R.E.L., Atkinson, M.D., Holton, D.A.: Algorithms for pattern involvement in permutations. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 355–367. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45678-3_31

    Chapter  MATH  Google Scholar 

  3. Albert, M.H., Lackner, M.-L., Lackner, M., Vatter, V.: The complexity of pattern matching for 321-avoiding and skew-merged permutations. DMTCS 18(2) (2016)

    Google Scholar 

  4. Atkinson, M.D.: Permutations which are the union of an increasing and a decreasing. EJC 5, 263–273 (1998)

    MathSciNet  Google Scholar 

  5. Baik, J., Deift, P., Johansson, K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12, 1119–1178 (1999)

    Article  MathSciNet  Google Scholar 

  6. Bose, P., Buss, J.F., Lubiw, A.: Pattern matching for permutations. IIPL 65(5), 277–283 (1998)

    Article  MathSciNet  Google Scholar 

  7. Brandstädt, A., Kratsch, D.: On partitions of permutations into increasing and decreasing subsequences. Elektron. Inf. Verarb. Kybern. EIK 22, 263–273 (1986)

    MathSciNet  MATH  Google Scholar 

  8. Bruner, M.-L., Lackner, M.: The computational landscape of permutation patterns. CoRR, abs/1301.0340 (2013)

    Google Scholar 

  9. Bruner, M.-L., Lackner, M.: A fast algorithm for permutation pattern matching based on alternating runs. Algorithmica 75(1), 84–117 (2016)

    Article  MathSciNet  Google Scholar 

  10. Crochemore, M., Porat, E.: Fast computation of a longest increasing subsequence and application. Inf. Comput. 208(9), 1054–1059 (2010)

    Article  MathSciNet  Google Scholar 

  11. Fomin, F., Kratsch, D., Novelli, J.-C.: Approximating minimum cocolourings. IPL 84, 285–290 (2002)

    Article  Google Scholar 

  12. Guillemot, S., Marx, D.: Finding small patterns in permutations in linear time. In: Chekuri, C. (ed.) SODA, pp. 82–101. SIAM (2014)

    Google Scholar 

  13. Guillemot, S., Vialette, S.: Pattern matching for 321-avoiding permutations. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 1064–1073. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10631-6_107

    Chapter  Google Scholar 

  14. Ibarra, L.: Finding pattern matchings for permutations. IPL 61(6), 293–295 (1997)

    Article  MathSciNet  Google Scholar 

  15. Kézdy, A.E.: Partitioning permutations into increasing and decreasing subsequences. J. Comb. Theor. A 73(2), 353–359 (1996)

    Article  MathSciNet  Google Scholar 

  16. Kitaev, S.: Patterns in Permutations and Words. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17333-2

    Book  MATH  Google Scholar 

  17. Jelínek, V., Kync̆l, J.: Hardness of permutation pattern matching. In: Klein, P. (ed.) SODA, pp. 378–396. SIAM (2017)

    Google Scholar 

  18. Neou, B.E., Rizzi, R., Vialette, S.: Pattern matching for separable permutations. In: Inenaga, S., Sadakane, K., Sakai, T. (eds.) SPIRE 2016. LNCS, vol. 9954, pp. 260–272. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46049-9_25

    Chapter  Google Scholar 

  19. Nijenhuis, A., Wilf, H.S.: Combinatorial Algorithms for Computers and Calculators. Computer Science and Applied Mathematics, 2nd edn. Academic Press, New York (1978)

    MATH  Google Scholar 

  20. Romik, D.: The Surprising Mathematics of Longest Increasing Subsequences. Institute of Mathematical Statistics Textbooks, vol. 04. Cambridge University Press, Cambridge (2015)

    MATH  Google Scholar 

  21. Steele, J.M.: Variations on the monotone subsequence theme of Erdös and Szekeres. Discrete Probab. Algorithms 72, 111–131 (1995)

    Article  Google Scholar 

  22. Di Stefano, G., Krause, S., Lübbecke, M.E., Zimmermann, U.T.: On minimum k-modal partitions of permutations. JDA 6(3), 381–392 (2008). https://doi.org/10.1016/j.jda.2008.01.002

    Article  MathSciNet  MATH  Google Scholar 

  23. Di Stefano, G., Krause, S., Lübbecke, M.E., Zimmermann, U.T.: On minimum k-modal partitions of permutations. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 374–385. Springer, Heidelberg (2006). https://doi.org/10.1007/11682462_36

    Chapter  Google Scholar 

  24. Wagner, K.: Monotonic coverings of finite sets. Elektronische Informationsverarbeitung und Kybernetik 20(12), 633–639 (1984)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Vialette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bulteau, L., Rizzi, R., Vialette, S. (2018). Pattern Matching for k-Track Permutations. In: Iliopoulos, C., Leong, H., Sung, WK. (eds) Combinatorial Algorithms. IWOCA 2018. Lecture Notes in Computer Science(), vol 10979. Springer, Cham. https://doi.org/10.1007/978-3-319-94667-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94667-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94666-5

  • Online ISBN: 978-3-319-94667-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics