Advertisement

Pattern Matching for k-Track Permutations

  • Laurent Bulteau
  • Romeo Rizzi
  • Stéphane VialetteEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10979)

Abstract

Given permutations \(\tau \) and \(\pi \), the permutation pattern (PP) problem is to decide whether \(\pi \) occurs in \(\tau \) as an order-isomorphic subsequence. Although an FPT algorithm is known for PP parameterized by the size of the pattern \(|\pi |\) [Guillemot and Marx 2014], the high complexity of this algorithm makes it impractical for most instances. In this paper we approach the PP problem from k-track permutations, i.e. those permutations that are the union of k increasing patterns or, equivalently, those permutation that avoid the decreasing pattern \((k+1) k \ldots 1\). Recently, k-track permutations have been shown to be central combinatorial objects in the study of the PP problem. Indeed, the PP problem is NP-complete when \(\pi \) is 321-avoiding and \(\tau \) is 4321-avoiding but is solvable in polynomial-time if both \(\pi \) and \(\tau \) avoid 321. We propose and implement an exact algorithm, FPT for parameters k and \(|\pi |\), which allows to solve efficiently some large instances.

References

  1. 1.
    Ahal, S., Rabinovich, Y.: On complexity of the subpattern problem. SIAM JDM 22(2), 629–649 (2008)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Albert, M.H., Aldred, R.E.L., Atkinson, M.D., Holton, D.A.: Algorithms for pattern involvement in permutations. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 355–367. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45678-3_31CrossRefzbMATHGoogle Scholar
  3. 3.
    Albert, M.H., Lackner, M.-L., Lackner, M., Vatter, V.: The complexity of pattern matching for 321-avoiding and skew-merged permutations. DMTCS 18(2) (2016)Google Scholar
  4. 4.
    Atkinson, M.D.: Permutations which are the union of an increasing and a decreasing. EJC 5, 263–273 (1998)MathSciNetGoogle Scholar
  5. 5.
    Baik, J., Deift, P., Johansson, K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12, 1119–1178 (1999)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bose, P., Buss, J.F., Lubiw, A.: Pattern matching for permutations. IIPL 65(5), 277–283 (1998)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Brandstädt, A., Kratsch, D.: On partitions of permutations into increasing and decreasing subsequences. Elektron. Inf. Verarb. Kybern. EIK 22, 263–273 (1986)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bruner, M.-L., Lackner, M.: The computational landscape of permutation patterns. CoRR, abs/1301.0340 (2013)Google Scholar
  9. 9.
    Bruner, M.-L., Lackner, M.: A fast algorithm for permutation pattern matching based on alternating runs. Algorithmica 75(1), 84–117 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Crochemore, M., Porat, E.: Fast computation of a longest increasing subsequence and application. Inf. Comput. 208(9), 1054–1059 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fomin, F., Kratsch, D., Novelli, J.-C.: Approximating minimum cocolourings. IPL 84, 285–290 (2002)CrossRefGoogle Scholar
  12. 12.
    Guillemot, S., Marx, D.: Finding small patterns in permutations in linear time. In: Chekuri, C. (ed.) SODA, pp. 82–101. SIAM (2014)Google Scholar
  13. 13.
    Guillemot, S., Vialette, S.: Pattern matching for 321-avoiding permutations. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 1064–1073. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10631-6_107CrossRefGoogle Scholar
  14. 14.
    Ibarra, L.: Finding pattern matchings for permutations. IPL 61(6), 293–295 (1997)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kézdy, A.E.: Partitioning permutations into increasing and decreasing subsequences. J. Comb. Theor. A 73(2), 353–359 (1996)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kitaev, S.: Patterns in Permutations and Words. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-17333-2CrossRefzbMATHGoogle Scholar
  17. 17.
    Jelínek, V., Kync̆l, J.: Hardness of permutation pattern matching. In: Klein, P. (ed.) SODA, pp. 378–396. SIAM (2017)Google Scholar
  18. 18.
    Neou, B.E., Rizzi, R., Vialette, S.: Pattern matching for separable permutations. In: Inenaga, S., Sadakane, K., Sakai, T. (eds.) SPIRE 2016. LNCS, vol. 9954, pp. 260–272. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46049-9_25CrossRefGoogle Scholar
  19. 19.
    Nijenhuis, A., Wilf, H.S.: Combinatorial Algorithms for Computers and Calculators. Computer Science and Applied Mathematics, 2nd edn. Academic Press, New York (1978)zbMATHGoogle Scholar
  20. 20.
    Romik, D.: The Surprising Mathematics of Longest Increasing Subsequences. Institute of Mathematical Statistics Textbooks, vol. 04. Cambridge University Press, Cambridge (2015)zbMATHGoogle Scholar
  21. 21.
    Steele, J.M.: Variations on the monotone subsequence theme of Erdös and Szekeres. Discrete Probab. Algorithms 72, 111–131 (1995)CrossRefGoogle Scholar
  22. 22.
    Di Stefano, G., Krause, S., Lübbecke, M.E., Zimmermann, U.T.: On minimum k-modal partitions of permutations. JDA 6(3), 381–392 (2008).  https://doi.org/10.1016/j.jda.2008.01.002MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Di Stefano, G., Krause, S., Lübbecke, M.E., Zimmermann, U.T.: On minimum k-modal partitions of permutations. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 374–385. Springer, Heidelberg (2006).  https://doi.org/10.1007/11682462_36CrossRefGoogle Scholar
  24. 24.
    Wagner, K.: Monotonic coverings of finite sets. Elektronische Informationsverarbeitung und Kybernetik 20(12), 633–639 (1984)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Laurent Bulteau
    • 1
  • Romeo Rizzi
    • 2
  • Stéphane Vialette
    • 1
    Email author
  1. 1.Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE Paris, UPEMMarne-la-ValléeFrance
  2. 2.Department of Computer ScienceUniversity of VeronaVeronaItaly

Personalised recommendations