Advertisement

Minsum k-Sink Problem on Dynamic Flow Path Networks

  • Robert Benkoczi
  • Binay Bhattacharya
  • Yuya Higashikawa
  • Tsunehiko KamedaEmail author
  • Naoki Katoh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10979)

Abstract

In emergencies such as earthquakes, nuclear accidents, etc., we need an evacuation plan. We model a street, a building corridor, etc. by a path network, and consider the problem of locating a set of k sinks on a dynamic flow path network with n vertices, where people are located, that minimizes the sum of the evacuation times of all evacuees. Our minsum model is more difficult to deal with than the minmax model, because the cost function is not monotone along the path. We present an \(O(kn^2\log ^2 n)\) time algorithm for solving this problem, which is the first polynomial time result. If the edge capacities are uniform, we give an \(O(kn\log ^3 n)\) time algorithm.

References

  1. 1.
    Arumugam, G.P., Augustine, J., Golin, M., Srikanthan, P.: A polynomial time algorithm for minimax-regret evacuation on a dynamic path. arXiv:1404,5448v1 [cs.DS], 22 April 2014, 165 (2014)
  2. 2.
    Bhattacharya, B., Golin, M.J., Higashikawa, Y., Kameda, T., Katoh, N.: Improved algorithms for computing k-sink on dynamic flow path networks. In: Ellen, F., Kolokolova, A., Sack, J.R. (eds.) Algorithms and Data Structures. LNCS, vol. 10389, pp. 133–144. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-62127-2_12CrossRefzbMATHGoogle Scholar
  3. 3.
    Bhattacharya, B., Kameda, T.: Improved algorithms for computing minmax regret sinks on path and tree networks. Theoret. Comput. Sci. 607, 411–425 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, D., Golin, M.: Sink evacuation on trees with dynamic confluent flows. In: Hong, S.-H. (ed.) 27th International Symposium on Algorithms and Computation (ISAAC), Leibniz International Proceedings in Informatics, pp. 25:1–25:13 (2016)Google Scholar
  5. 5.
    Cheng, S.-W., Higashikawa, Y., Katoh, N., Ni, G., Su, B., Xu, Y.: Minimax regret 1-sink location problems in dynamic path networks. In: Chan, T.-H.H., Lau, L.C., Trevisan, L. (eds.) Theory and Applications of Models of Computation. LNCS, vol. 7876, pp. 121–132. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38236-9_12CrossRefGoogle Scholar
  6. 6.
    Hamacher, H., Tjandra, S.: Mathematical modelling of evacuation problems: a state of the art. In: Pedestrian and Evacuation Dynamics, pp. 227–266. Springer (2002)Google Scholar
  7. 7.
    Hassin, R., Tamir, A.: Improved complexity bounds for location problems on the real line. Oper. Res. Lett. 10(7), 395–402 (1991)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Higashikawa, Y., Augustine, J., Cheng, S.W., Golin, M.J., Katoh, N., Ni, G., Su, B., Xu, Y.: Minimax regret 1-sink location problem in dynamic path networks. Theoret. Comput. Sci. 588(11), 24–36 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Higashikawa, Y., Golin, M.J., Katoh, N.: Minimax regret sink location problem in dynamic tree networks with uniform capacity. J. Graph Algorithms Appl. 18(4), 539–555 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Higashikawa, Y., Golin, M.J., Katoh, N.: Multiple sink location problems in dynamic path networks. Theoret. Comput. Sci. 607(1), 2–15 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kariv, O., Hakimi, S.: An algorithmic approach to network location problems, Part II: the \(p\)-median. SIAM J. Appl. Math. 37, 539–560 (1979)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Mamada, S., Uno, T., Makino, K., Fujishige, S.: An \({O}(n\log ^2 n)\) algorithm for a sink location problem in dynamic tree networks. Discrete Appl. Math. 154, 2387–2401 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Robert Benkoczi
    • 1
  • Binay Bhattacharya
    • 2
  • Yuya Higashikawa
    • 3
  • Tsunehiko Kameda
    • 2
    Email author
  • Naoki Katoh
    • 4
  1. 1.Department of Mathematics and Computer ScienceUniversity of LethbridgeLethbridgeCanada
  2. 2.School of Computing ScienceSimon Fraser UniversityBurnabyCanada
  3. 3.School of Business AdministrationUniversity of HyogoKobeJapan
  4. 4.School of Science and TechnologyKwansei Gakuin UniversitySandaJapan

Personalised recommendations