Advertisement

Graphs that Are Not Pairwise Compatible: A New Proof Technique (Extended Abstract)

  • Pierluigi Baiocchi
  • Tiziana CalamoneriEmail author
  • Angelo Monti
  • Rossella Petreschi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10979)

Abstract

A graph \(G=(V,E)\) is a pairwise compatibility graph (PCG) if there exists an edge-weighted tree T and two non-negative real numbers \(d_{min}\) and \(d_{max}\), \(d_{min} \le d_{max}\), such that each node \(u \in V\) is uniquely associated to a leaf of T and there is an edge \((u,v) \in E\) if and only if \(d_{min} \le d_{T} (u, v) \le d_{max}\), where \(d_{T} (u, v)\) is the sum of the weights of the edges on the unique path \(P_{T}(u,v)\) from u to v in T. Understanding which graph classes lie inside and which ones outside the PCG class is an important issue. Despite numerous efforts, a complete characterization of the PCG class is not known yet. In this paper we propose a new proof technique that allows us to show that some interesting classes of graphs have empty intersection with PCG. We demonstrate our technique by showing many graph classes that do not lie in PCG. As a side effect, we show a not pairwise compatibility planar graph with 8 nodes (i.e. \(C^2_8\)), so improving the previously known result concerning the smallest planar graph known not to be PCG.

Keywords

Phylogenetic tree reconstruction problem Pairwise Compatibility Graphs (PCGs) PCG recognition problem 

References

  1. 1.
    Baiocchi, P., Calamoneri, T., Monti, A., Petreschi, R.: Some classes of graphs that are not PCGs. arXiv:1707.07436 [cs.DM]
  2. 2.
    Brandstädt, A., Hundt, C.: Ptolemaic graphs and interval graphs are leaf powers. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 479–491. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78773-0_42CrossRefGoogle Scholar
  3. 3.
    Calamoneri, T., Frangioni, A., Sinaimeri, B.: Pairwise compatibility graphs of caterpillars. Comput. J. 57(11), 1616–1623 (2014)CrossRefGoogle Scholar
  4. 4.
    Calamoneri, T., Frascaria, D., Sinaimeri, B.: All graphs with at most seven vertices are pairwise compatibility graphs. Comput. J. 56(7), 882–886 (2013)CrossRefGoogle Scholar
  5. 5.
    Calamoneri, T., Sinaimeri, B.: On pairwise compatibility graphs: a survey. SIAM Rev. 58(3), 445–460 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Calamoneri, T., Petreschi, R.: On pairwise compatibility graphs having Dilworth number two. Theoret. Comput. Sci. 524, 34–40 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Durocher, S., Mondal, D., Rahman, Md.S.: On graphs that are not PCGs. Theoret. Comput. Sci. 571, 78–87 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Felsenstein, J.: Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27, 401–410 (1978)CrossRefGoogle Scholar
  9. 9.
    Kearney, P., Munro, J.I., Phillips, D.: Efficient generation of uniform samples from phylogenetic trees. In: Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS, vol. 2812, pp. 177–189. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39763-2_14CrossRefGoogle Scholar
  10. 10.
    Mehnaz, S., Rahman, M.S.: Pairwise compatibility graphs revisited. In: Proceedings of the International Conference on Informatics, Electronics Vision (ICIEV) (2013)Google Scholar
  11. 11.
    Salma, S.A., Rahman, Md.S.: Triangle-free outerplanar 3-graphs are pairwise compatibility graphs. J. Graph Algorithms Appl. 17(2), 81–102 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Yanhaona, M.N., Bayzid, Md.S., Rahman, Md.S.: Discovering pairwise compatibility graphs. Discrete Math. Algorithms Appl. 2(4), 607–623 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Yanhaona, M.N., Hossain, K.S.M.T., Rahman, Md.S.: Pairwise compatibility graphs. J. Appl. Math. Comput. 30, 479–503 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hossain, Md.I., Salma, S.A., Rahman, Md.S., Mondal, D.: A necessary condition and a sufficient condition for pairwise compatibility graphs. J. Graph Algorithms Appl. 21(3), 341–352 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pierluigi Baiocchi
    • 1
  • Tiziana Calamoneri
    • 1
    Email author
  • Angelo Monti
    • 1
  • Rossella Petreschi
    • 1
  1. 1.Computer Science Department“Sapienza” University of RomeRomeItaly

Personalised recommendations