Advertisement

How Far From a Worst Solution a Random Solution of a \(k\,\)CSP Instance Can Be?

  • Jean-François Culus
  • Sophie ToulouseEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10979)

Abstract

Given an instance I of an optimization constraint satisfaction problem (CSP), finding solutions with value at least the expected value of a random solution is easy. We wonder how good such solutions can be. Namely, we initiate the study of ratio \(\rho _E(I) =(\mathrm {E}_X[v(I, X)] -\mathrm {wor}(I))/(\mathrm {opt}(I) -\mathrm {wor}(I))\) where \(\mathrm {opt}(I)\), \(\mathrm {wor}(I)\) and \(\mathrm {E}_X[v(I, X)]\) refer to respectively the optimal, the worst, and the average solution values on I. We here focus on the case when the variables have a domain of size \(q \ge 2\) and the constraint arity is at most \(k \ge 2\), where kq are two constant integers. Connecting this ratio to the highest frequency in orthogonal arrays with specified parameters, we prove that it is \(\varOmega (1/n^{k/2})\) if \(q =2\), \(\varOmega (1/n^{k -1 -\lfloor \log _{p^\kappa } (k -1)\rfloor })\) where \(p^\kappa \) is the smallest prime power such that \(p^\kappa \ge q\) otherwise, and \(\varOmega (1/q^k)\) in \((\max \{q, k\} +1\})\)-partite instances.

Keywords

Average differential ratio Optimization constraint satisfaction problems Orthogonal arrays 

References

  1. 1.
    Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256–278 (1974)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Håstad, J., Venkatesh, S.: On the advantage over a random assignment. Random Struct. Algorithms 25(2), 117–149 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Håstad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Escoffier, B., Paschos, V.T.: Differential approximation of MIN SAT, MAX SAT and related problems. EJOR 181(2), 620–633 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40(4), 1133–1153 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chan, S.O.: Approximation resistance from pairwise-independent subgroups. J. ACM 63(3), 27:1–27:32 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hedayat, A., Sloane, N.J.A., Stufken, J.: Orthogonal Arrays: Theory and Applications. Springer, New York (1999).  https://doi.org/10.1007/978-1-4612-1478-6
  9. 9.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North Holland Publishing Co., Amsterdam (1977)Google Scholar
  10. 10.
    Bierbrauer, J.: Construction of orthogonal arrays. J. Stat. Plann. Infer. 56(1), 39–47 (1996)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Demange, M., Paschos, V.T.: On an approximation measure founded on the links between optimization and polynomial approximation theory. Theor. Comput. Sci. 158(1–2), 117–141 (1996)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Austrin, P., Håstad, J.: Randomly supported independence and resistance. SIAM J. Comput. 40(1), 1–27 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Alon, N., Naor, A.: Approximating the cut-norm via grothendieck’s inequality. SIAM J. Comput. 35(4), 787–803 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Nemirovski, A.S., Roos, C., Terlaky, T.: On maximization of quadratic form over intersection of ellipsoids with common center. Math. Program. 86(3), 463–473 (1999)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Khot, S., Naor, A.: Linear equations modulo 2 and the $L\_1$ diameter of convex bodies. SIAM J. Comput. 38(4), 1448–1463 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Nesterov, Y.: Semidefinite relaxation and nonconvex quadratic optimization. Optim. Methods Softw. 9(1–3), 141–160 (1998)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Culus, J.F., Toulouse, S.: 2 CSPs all are approximable within some constant differential factor. In: 5th International Symposium on Combinatorial Optimization (ISCO) (20I8, to appear)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CEREGMIAUniversité des AntillesPointe-à-PitreFrance
  2. 2.LIPN (UMR CNRS 7030), Institut GaliléeVilletaneuseFrance

Personalised recommendations