Skip to main content

How Far From a Worst Solution a Random Solution of a \(k\,\)CSP Instance Can Be?

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10979))

Included in the following conference series:

Abstract

Given an instance I of an optimization constraint satisfaction problem (CSP), finding solutions with value at least the expected value of a random solution is easy. We wonder how good such solutions can be. Namely, we initiate the study of ratio \(\rho _E(I) =(\mathrm {E}_X[v(I, X)] -\mathrm {wor}(I))/(\mathrm {opt}(I) -\mathrm {wor}(I))\) where \(\mathrm {opt}(I)\), \(\mathrm {wor}(I)\) and \(\mathrm {E}_X[v(I, X)]\) refer to respectively the optimal, the worst, and the average solution values on I. We here focus on the case when the variables have a domain of size \(q \ge 2\) and the constraint arity is at most \(k \ge 2\), where kq are two constant integers. Connecting this ratio to the highest frequency in orthogonal arrays with specified parameters, we prove that it is \(\varOmega (1/n^{k/2})\) if \(q =2\), \(\varOmega (1/n^{k -1 -\lfloor \log _{p^\kappa } (k -1)\rfloor })\) where \(p^\kappa \) is the smallest prime power such that \(p^\kappa \ge q\) otherwise, and \(\varOmega (1/q^k)\) in \((\max \{q, k\} +1\})\)-partite instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976)

    Article  MathSciNet  Google Scholar 

  2. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256–278 (1974)

    Article  MathSciNet  Google Scholar 

  3. Håstad, J., Venkatesh, S.: On the advantage over a random assignment. Random Struct. Algorithms 25(2), 117–149 (2004)

    Article  MathSciNet  Google Scholar 

  4. Håstad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)

    Article  MathSciNet  Google Scholar 

  5. Escoffier, B., Paschos, V.T.: Differential approximation of MIN SAT, MAX SAT and related problems. EJOR 181(2), 620–633 (2007)

    Article  MathSciNet  Google Scholar 

  6. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

    Article  MathSciNet  Google Scholar 

  7. Chan, S.O.: Approximation resistance from pairwise-independent subgroups. J. ACM 63(3), 27:1–27:32 (2016)

    Article  MathSciNet  Google Scholar 

  8. Hedayat, A., Sloane, N.J.A., Stufken, J.: Orthogonal Arrays: Theory and Applications. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-1478-6

  9. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North Holland Publishing Co., Amsterdam (1977)

    Google Scholar 

  10. Bierbrauer, J.: Construction of orthogonal arrays. J. Stat. Plann. Infer. 56(1), 39–47 (1996)

    Article  MathSciNet  Google Scholar 

  11. Demange, M., Paschos, V.T.: On an approximation measure founded on the links between optimization and polynomial approximation theory. Theor. Comput. Sci. 158(1–2), 117–141 (1996)

    Article  MathSciNet  Google Scholar 

  12. Austrin, P., Håstad, J.: Randomly supported independence and resistance. SIAM J. Comput. 40(1), 1–27 (2011)

    Article  MathSciNet  Google Scholar 

  13. Alon, N., Naor, A.: Approximating the cut-norm via grothendieck’s inequality. SIAM J. Comput. 35(4), 787–803 (2006)

    Article  MathSciNet  Google Scholar 

  14. Nemirovski, A.S., Roos, C., Terlaky, T.: On maximization of quadratic form over intersection of ellipsoids with common center. Math. Program. 86(3), 463–473 (1999)

    Article  MathSciNet  Google Scholar 

  15. Khot, S., Naor, A.: Linear equations modulo 2 and the $L\_1$ diameter of convex bodies. SIAM J. Comput. 38(4), 1448–1463 (2008)

    Article  MathSciNet  Google Scholar 

  16. Nesterov, Y.: Semidefinite relaxation and nonconvex quadratic optimization. Optim. Methods Softw. 9(1–3), 141–160 (1998)

    Article  MathSciNet  Google Scholar 

  17. Culus, J.F., Toulouse, S.: 2 CSPs all are approximable within some constant differential factor. In: 5th International Symposium on Combinatorial Optimization (ISCO) (20I8, to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Toulouse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Culus, JF., Toulouse, S. (2018). How Far From a Worst Solution a Random Solution of a \(k\,\)CSP Instance Can Be?. In: Iliopoulos, C., Leong, H., Sung, WK. (eds) Combinatorial Algorithms. IWOCA 2018. Lecture Notes in Computer Science(), vol 10979. Springer, Cham. https://doi.org/10.1007/978-3-319-94667-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94667-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94666-5

  • Online ISBN: 978-3-319-94667-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics