Advertisement

Placing Segments on Parallel Arcs

  • Yen Kaow NgEmail author
  • Wenlong Jia
  • Shuai Cheng Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10979)

Abstract

In this paper we consider the problem of arranging segments on parallel arcs drawn within a circular sector, to provide foundational work for the visualization of genomic regions in the study of pathogenic integration. The arcs as well as the start and end angles for each segment are pre-defined; our problem is to place each segment on an arc without having them overlap. There are no segments that span multiple arcs. For visualization purpose, the segments are to be easily distinguishable. To achieve that we consider various criteria that in a sense, place segments as far as possible from each other—for instance, maximizing the sum of inter-center distances between nearest segments. We show complexity results for some of the resultant problems, while providing approximation or heuristic solutions for others. Our algorithms have been implemented in JavaScript and made available at https://github.com/kalngyk/segmentplacer.

Keywords

Segment placement Approximation algorithm Visualization 

References

  1. 1.
    Adey, A., Burton, J.N., Kitzman, J.O., Hiatt, J.B., Lewis, A.P., Martin, B.K., Qiu, R., Lee, C., Shendure, J.: The haplotype-resolved genome and epigenome of the aneuploid hela cancer cell line. Nature 500(7461), 207–211 (2013)CrossRefGoogle Scholar
  2. 2.
    Forment, J.V., Kaidi, A., Jackson, S.P.: Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat. Rev. Cancer 12(10), 663 (2012)CrossRefGoogle Scholar
  3. 3.
    Kataoka, K., Shiraishi, Y., Takeda, Y., Sakata, S., Matsumoto, M., Nagano, S., Maeda, T., Nagata, Y., Kitanaka, A., Mizuno, S., et al.: Aberrant PD-L1 expression through 3\(^{\prime }\)-UTR disruption in multiple cancers. Nature 534(7607), 402 (2016)CrossRefGoogle Scholar
  4. 4.
    Kleinberg, J., Tardos, É.: Algorithm Design. Addison Wesley, Reading (2006)Google Scholar
  5. 5.
    Knuth, D.E.: Art of Computer Programming, Volume 1: Fundamental Algorithms. Addison-Wesley Professional, Reading (1973)Google Scholar
  6. 6.
    Li, S.C., Leong, H.W., Quek, S.K.: New approximation algorithms for some dynamic storage allocation problems. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 339–348. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27798-9_37CrossRefGoogle Scholar
  7. 7.
    Lipson, D., Capelletti, M., Yelensky, R., Otto, G., Parker, A., Jarosz, M., Curran, J.A., Balasubramanian, S., Bloom, T., Brennan, K.W., et al.: Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat. Med. 18(3), 382 (2012)CrossRefGoogle Scholar
  8. 8.
    Nault, J.-C., Datta, S., Imbeaud, S., Franconi, A., Mallet, M., Couchy, G., Letouzé, E., Pilati, C., Verret, B., Blanc, J.-F., et al.: Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat. Genet. 47(10), 1187 (2015)CrossRefGoogle Scholar
  9. 9.
    Robson, J.M.: Bounds for some functions concerning dynamic storage allocation. J. ACM 21(3), 491–499 (1974)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Soda, M., Choi, Y.L., Enomoto, M., Takada, S., Yamashita, Y., Ishikawa, S., Fujiwara, S., Watanabe, H., Kurashina, K., Hatanaka, H., et al.: Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448(7153), 561 (2007)CrossRefGoogle Scholar
  11. 11.
    Stephens, P.J., McBride, D.J., Lin, M.-L., Varela, I., Pleasance, E.D., Simpson, J.T., Stebbings, L.A., Leroy, C., Edkins, S., Mudie, L.J., et al.: Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462(7276), 1005 (2009)CrossRefGoogle Scholar
  12. 12.
    Sung, W.-K., Zheng, H., Li, S., Chen, R., Liu, X., Li, Y., Lee, N.P., Lee, W.H., Ariyaratne, P.N., Tennakoon, C., et al.: Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat. Genet. 44(7), 765–769 (2012)CrossRefGoogle Scholar
  13. 13.
    Waddell, N., Pajic, M., Patch, A.-M., Chang, D.K., Kassahn, K.S., Bailey, P., Johns, A.L., Miller, D., Nones, K., Quek, K., et al.: Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518(7540), 495 (2015)CrossRefGoogle Scholar
  14. 14.
    Yang, L., Luquette, L.J., Gehlenborg, N., Xi, R., Haseley, P.S., Hsieh, C.-H., Zhang, C., Ren, X., Protopopov, A., Chin, L., et al.: Diverse mechanisms of somatic structural variations in human cancer genomes. Cell 153(4), 919–929 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science, Faculty of Information and Communication TechnologyUniversiti Tunku Abdul RahmanKamparMalaysia
  2. 2.Department of Computer ScienceCity University of Hong KongKowloon TongHong Kong

Personalised recommendations