Skip to main content

Cryptographic Limitations on Polynomial-Time a Posteriori Query Learning

  • Conference paper
  • First Online:
Book cover Combinatorial Algorithms (IWOCA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10979))

Included in the following conference series:

  • 673 Accesses

Abstract

We investigate the polynomial-time learnability by using examples and membership queries. Angluin and Kharitonov [1] proved that various concept classes (e.g., Boolean formulae, non-deterministic finite automata) are not polynomial-time learnable in this learning model based on a public-key encryption scheme with a certain security (i.e., IND-CCA1). As a stronger learning model, we consider an a posteriori query learning model, and show that it is indeed stronger than the above learning model if a one-way function exists. Nevertheless, from a secure encryption scheme, we prove that many natural classes containing Boolean formula concept class is not polynomial-time learnable even in this stronger learning model. The security of an encryption scheme used in this paper is weaker than the one used by Angluin and Kharitonov.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Let n be the length of input. \(NC^i\) is the class computed by a family of polynomial size and \(O(\log ^i(n))\) depth circuits with bounded fan-in, and \(AC^i\) is the similar class except that gates are allowed to have unbounded fan-in.

References

  1. Angluin, D., Kharitonov, M.: When won’t membership queries help? J. Comput. Syst. Sci. 50(2), 336–355 (1995)

    Article  MathSciNet  Google Scholar 

  2. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, New York (2004)

    Book  Google Scholar 

  3. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

    Article  MathSciNet  Google Scholar 

  4. Haussler, D., Kearns, M., Littlestone, N., Warmuth, M.K.: Equivalence of models for polynomial learnability. In: Proceedings of the First Annual Workshop on Computational Learning Theory, pp. 42–55 (1988)

    Google Scholar 

  5. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based cryptography. In: Proceedings of the 30th Annual Symposium on Foundations of Computer Science, pp. 230–235 (1989)

    Google Scholar 

  6. Pitt, L., Warmuth, M.K.: Prediction-preserving reducibility. J. Comput. Syst. Sci. 41(3), 430–467 (1990)

    Article  MathSciNet  Google Scholar 

  7. Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, pp. 387–394 (1990)

    Google Scholar 

  8. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5(2), 197–227 (1990)

    Google Scholar 

  9. Stern, J., Pointcheval, D., Malone-Lee, J., Smart, N.P.: Flaws in applying proof methodologies to signature schemes. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 93–110. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_7

    Chapter  MATH  Google Scholar 

  10. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikito Nanashima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nanashima, M. (2018). Cryptographic Limitations on Polynomial-Time a Posteriori Query Learning. In: Iliopoulos, C., Leong, H., Sung, WK. (eds) Combinatorial Algorithms. IWOCA 2018. Lecture Notes in Computer Science(), vol 10979. Springer, Cham. https://doi.org/10.1007/978-3-319-94667-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94667-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94666-5

  • Online ISBN: 978-3-319-94667-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics