The Crossing Number of Seq-Shellable Drawings of Complete Graphs

  • Petra Mutzel
  • Lutz OettershagenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10979)


The Harary-Hill conjecture states that for every \(n\ge 3\) the number of crossings of a drawing of the complete graph \(K_n\) is at least
$$\begin{aligned} H(n) := \frac{1}{4}\Big \lfloor \frac{n}{2}\Big \rfloor \Big \lfloor \frac{n-1}{2}\Big \rfloor \Big \lfloor \frac{n-2}{2}\Big \rfloor \Big \lfloor \frac{n-3}{2}\Big \rfloor \text {.} \end{aligned}$$
So far, the conjecture could only be verified for arbitrary drawings of \(K_n\) with \(n\le 12\). In recent years, progress has been made in verifying the conjecture for certain classes of drawings, for example 2-page-book, x-monotone, x-bounded, shellable and bishellable drawings. Up to now, the class of bishellable drawings was the broadest class for which the Harary-Hill conjecture has been verified, as it contains all beforehand mentioned classes. In this work, we introduce the class of seq-shellable drawings and verify the Harary-Hill conjecture for this new class. We show that bishellability implies seq-shellability and exhibit a non-bishellable but seq-shellable drawing of \(K_{11}\), therefore the class of seq-shellable drawings strictly contains the class of bishellable drawings.


  1. 1.
    Guy, R.K.: A combinatorial problem. Nabla Bull. Malay. Math. Soc. 7, 68–72 (1960)Google Scholar
  2. 2.
    Harary, F., Hill, A.: On the number of crossings in a complete graph. Proc. Edinb. Math. Soc. 13(4), 333–338 (1963)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Pan, S., Richter, R.B.: The crossing number of \(K_{11}\) is 100. J. Graph Theory 56(2), 128–134 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    McQuillan, D., Pan, S., Richter, R.B.: On the crossing number of \(K_{13}\). J. Comb. Theory Ser. B 115, 224–235 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ábrego, B., Aichholzer, O., Fernández-Merchant, S., Hackl, T., Pammer, J., Pilz, A., Ramos, P., Salazar, G., Vogtenhuber, B.: All good drawings of small complete graphs. In: Proceedings of 31st European Workshop on Computational Geometry (EuroCG), pp. 57–60 (2015)Google Scholar
  6. 6.
    Ábrego, B., Aichholzer, O., Fernández-Merchant, S., Ramos, P., Salazar, G.: The 2-page crossing number of \(K_n\). In: Proceedings of the Twenty-Eighth Annual Symposium on Computational Geometry. SoCG 2012, pp. 397–404. ACM, New York (2012)Google Scholar
  7. 7.
    Ábrego, B.M., Aichholzer, O., Fernández-Merchant, S., Ramos, P., Salazar, G.: Shellable drawings and the cylindrical crossing number of \(K_n\). Discrete Computa. Geom. 52(4), 743–753 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Balko, M., Fulek, R., Kyncl, J.: Crossing numbers and combinatorial characterization of monotone drawings of \(K_n\). Discrete Computa. Geom. 53(1), 107–143 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ábrego, B.M., Aichholzer, O., Fernández-Merchant, S., Ramos, P., Salazar, G.: More on the crossing number of \(K_n\): monotone drawings. Electron Notes Discrete Math. 44, 411–414 (2013)CrossRefGoogle Scholar
  10. 10.
    Ábrego, B., Aichholzer, O., Fernández-Merchant, S., McQuillan, D., Mohar, B., Mutzel, P., Ramos, P., Richter, R., Vogtenhuber, B.: Bishellable drawings of \(K_n\). In: Proceedings of XVII Encuentros de Geometría Computacional (EGC), Alicante, Spain, pp. 17–20 (2017)Google Scholar
  11. 11.
    Székely, L.A.: A successful concept for measuring non-planarity of graphs: the crossing number. Electron. Notes Discrete Math. 5, 284–287 (2000)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Schaefer, M.: The graph crossing number and its variants: a survey. Electron. J. Comb. 1000, DS21 (2013)Google Scholar
  13. 13.
    Ábrego, B.M., Cetina, M., Fernández-Merchant, S., Leaños, J., Salazar, G.: On \({\le } k\)-edges, crossings, and halving lines of geometric drawings of \(K_n\). Discrete Comput. Geom. 48(1), 192–215 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Erdös, P., Lovász, L., Simmons, A., Straus, E.G.: Dissection graphs of planar point sets. In: Srivastava, J.N. (ed.) A Survey of Combinatorial Theory, pp. 139–149. Elsevier, Amsterdam (1973)CrossRefGoogle Scholar
  15. 15.
    Lovász, L., Vesztergombi, K., Wagner, U., Welzl, E.: Convex quadrilaterals and k-sets. Contemp. Math. 342, 139–148 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceTU Dortmund UniversityDortmundGermany

Personalised recommendations